Preliminary study for Δ^{++} (Δ^{--}) measurement in p-p collisions

Quinto Convegno Nazionale sulla Fisica di ALICE Trieste, 12 Settembre 2009

Francesca Bellini

INFN - Sez. di Bologna Centro Studi e Ricerche "E.Fermi" - Roma

Outline

- 1. Δ resonance properties
- 1. Motivations for Δ study
- 1. The $\Delta^{++(--)}$ challenge
- 2. MonteCarlo spectra
- 3. ESD analysis
- 4. The background issue
- 5. Events classes definition for Event-Mixing
- 6. Expected signal
- 7. Results for Δ^{++} and Δ^{--}

$$\Delta BARYONS (S = 0, I = 3/2)$$

$$\Delta^{++} = uuu, \quad \Delta^{+} = uud, \quad \Delta^{0} = udd, \quad \Delta^{-} = ddd$$

$$\Delta(1232) P_{33} \qquad \qquad I(J^{P}) = \frac{3}{2}(\frac{3}{2}^{+})$$
Breit-Wigner mass (mixed charges) = 1231 to 1233 (\approx 1232)
MeV
Breit-Wigner full width (mixed charges) = 116 to 120 (\approx 118)
MeV

△(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Νπ	100 %	229
Nγ	0.52-0.60 %	259
$N\gamma$, helicity=1/2	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.41-0.47 %	259

Motivations

First physics with resonances

- multiplicity estimation
- identified particle spectra
- test of detectors performances

Heavy-ions collisions physics

- Resonances mass and width shift observed at RHIC:
 - re-scattering of decay products (p-p, d-Au)
 - chiral symmetry restoration hypothesis (Au-Au) for mesons (i.e. ρ)
 - ... but what about baryons?
- Resonances in-medium formation mechanism studies
- Δ life-time (~1.6 fm/c) comparable with the freeze-out time of QGP

The Δ^{++} challenge

$$\Delta^{++} \rightarrow \pi^{+} + \mathbf{p}$$
$$\Delta^{--} \rightarrow \pi^{-} + \mathbf{\bar{p}}$$

- doubly charged resonance
- no close doubly charged resonances
- very efficient PID for decay products
- Iow invariant mass, close to π +p threshold
- no secondary vertex
- "smart" background estimation needed

Input

Data sample from PDC_09/LHC09a4 on GRID **p-p minimum bias events with s^{1/2} = 10 TeV**

~ 4.8x10⁶ ESD events analysed

Root v5-23-02 AliRoot v4-16-Rev06

Montecarlo invariant mass for Δ^{++} and Δ^{--}

4.8x10⁶ minimum bias events contain ~ 4.5 x 10⁶ (Δ^{++}), + 2.6 x 10⁶ (Δ^{--})_{MC}

Montecarlo $p_{_{T}}$ and η spectra for $\Delta^{_{++}}$ and $\Delta^{_{--}}$

ESD analysis

- Same-event like-sign pairs: (π^+, p) and $(\pi^-, p) \rightarrow (S+B)_{se}$
- Selection of events with at least 1 pion and 1 proton
- Combined PID
- Primary tracks selection with standard ALICE cuts on track quality
- Single identified tracks kinetical cuts

|η| < 3 p_τ> 0.5 GeV/c

- Positive and negative cases studied separately to take into account different particle-antiparticle production
- Comparison with MC to estimate efficiency
- Subtraction of background

The background issue

Two possible techniques to estimate background :

- Same-event opposite-sign pairs: (π^-, p) and $(\pi^+, \bar{p}) \rightarrow (B)_{se}$
 - easiest and less expensive to compute
 - not "good" enough to extract signal: $\Delta^{\rm 0}$ belongs to the same multiplet of $\Delta^{\rm ++}$

→ irreducible background contribution

- Event-mixing like-sign pairs: (π^+, p) and $(\pi^-, p) \rightarrow (B)_{me}$
 - larger computational efforts required
 - better estimation of background with uncorrelated pairs
 - careful selection of events for mixing technique

→ take into account **event topology** in p-p collisions

Similarity classes of events

The ESD events topology has been studied by looking at:

- average transverse momentum
- average transverse mass
- charged multiplicity

The events have been classified in **3 "similarity" classes according** to the identified charged multiplicity (N)

> class A: 1≤N≤20 class B: 21≤N≤40 class C: N>40

to perform the event-mixing tecnique.

<m₇> vs. <p₇>

Protons and pions abundancies

<p_> vs. multiplicity

<p_>p_> vs. multiplicity – similarity classes

Geometrical acceptance and efficiency

Efficiency in color scale.

Expected signal shape

Preliminary results for ∆⁺⁺

New cut on single reconstructed tracks $p_T > 0.2 \text{ GeV/c}$

Geometrical acceptance and efficiency

Efficiency in color scale.

New preliminary results for Δ^{++}

Event Class A 35000 (S+B)se and (B)me pT>0.2 GeV/c 30000 25000 A priori normalisation 20000 factor 15000 entries 10000 40000 35000 5000 30000 0 1.5 2.5 4.5 2 3 3.5 Λ 25000 Invariant mass (GeV/c²) 20000 15000 (S+B)se 10000 (S+B)se and (B)me (B)me 5000 0 1.2 1.4 1.6 1.8 Invariant mass (GeV/c²)

Direct subtraction of background

New preliminary results for Δ^{--}

Direct subtraction of background

Conclusions

Estimation of background is a key point for the Δ^{++} and Δ^{--} signal extrapolation.

The event-mixing tecnique has been performed but the results after background subtraction are still very preliminary

...there is still some work to do...