

<u>V Convegno Nazionale sulla Fisica di ALICE</u> Trieste – September 12 - 14, 2009

First Physics measurements: dN_{ch}/dŋ with pixels

Domenico Elia, Maria Nicassio (INFN Bari)

Contents

First physics with ALICE

- charged-particle multiplicity and pseudorapidity density
- First physics papers in preparation¹) Charged-particle pseudorapidity density in proton-proton collisions at √s = 900 GeV/10 TeV with ALICE at LHC within the First Physics Task Force Charged-particle multiplicity distribution in proton-proton collisions at √s = 900 GeV/10 TeV with ALICE at LHC
- Charged-particle pseudorapidity density
 - role of the SPD for first data
 - charged multiplicity reconstruction
 - ✓ procedure: the "tracklet" algorithm
 - \checkmark optimization of the algorithm and cuts used
 - From the measured to the physical distribution
 - results on the last official Monte Carlo samples

Conclusions and outlook

Introduction

- Charged-particle multiplicity and pseudorapidity density:
 - ➢ first measurements (in p-p collisions) → first physics papers
 - global event characterization:
 - collisions at 900 GeV \rightarrow comparison with existing measurements, sistematics
 - collisions at 7/10/14 TeV \rightarrow MC configuration, energy dependence

Advantages (over ITS+TPC full track reconstruction)

> larger acceptance in η and p_T (down to ~ 30 MeV/c)

simpler and faster alignment and calibration procedures

First results with ~ 10⁴-10⁵ collisions
after few days of data taking at 900 GeV
after few hours of data taking at 7/14 TeV !

SPD will allow to

- reconstruct points produced by charged particle crossing the detector
- use them to find the interaction vertex position
- use both reconstructed points and vertex to reconstruct charged primary tracks produced in the collision (next slide)
 - contribute to event selection with the FastOr

Maria Nicassia (However triggering on beinger Mariossing Figicade Suffice for first collisions)

Track finding with SPD

"Tracklet" reconstruction algorithm

- looks for pairs of clusters (inner/outer layer) aligned with the reconstructed primary vertex within fiducial windows in z and \u03c6
- > option: outer layer clusters can be used in more than one tracklet

Measured quantities

- multiplicity = number of tracklets
- > pseudorapidity $\eta \rightarrow \theta$ angle cluster inner layer

Cuts applied

- need to optimize them (both in p-p and Pb-Pb) wrt
 - efficiency
 - background contamination

Fiducial window

Cut optimization study finalized, main conclusions:

- p-p: small improvement wrt default cuts
- Pb-Pb: completely different tuning needed (reference cuts defined)
- additional emerged features:

- \checkmark dependence of results on the cluster ordering
- \checkmark higher efficiencies with multiple use of outer layer clusters
 - try to improve the algorithm performance

New algorithm implemented and tested:

> iterative algorithm keeping the basic structure of the previous one with cut in $\Delta \phi$ and $\Delta \theta$

committed to AliRoot v4-17-Release

See: http://indico.cern.ch/conferenceDisplay.py?confId=61615

http://indico.cern.ch/materialDisplay.py?materialId=slides&confId=63865

Definition:

 $dN_{ch}/d\eta = \langle charged primaries per event \rangle$

Charged primaries:

- particles produced in the collision
- products of strong and em decays
- Corrections needed to get all the charged primaries in the SPD acceptance from the reconstructed tracklets:
 - background from secondaries
 - tracklet algorithm and detector inefficiency
 - detector acceptance
 - particles not reaching the sensitive layers
 - vertex reconstruction inefficiency
 - minimum bias trigger inefficiency

60k p-p events @ 7 TeV B=0.5 T (PYTHIA)

What do we need to identify?

- > among the generated primary particles:
 - ✓ **Reconstructed** \rightarrow particle having a tracklet associated
 - ✓ **Reconstructable** → *particle producing a signal on both layers*
 - ✓ **Detectable** → particle crossing both SPD layers
- What do we need to calculate corrections?

dN_{ch}/dη **analysis:** correction matrices

Track level

- Background primReconstructed
- Algorithm and SPD ineff. primReconstructed primReconstructable
- SPD acceptance primReconstructable primDetectable
- Disappeared particles primDetectable

Vertex and trigger ineff.

$$BkgCorrW(\eta, z_{v}) = \frac{\sum_{i \in v} \# prim \operatorname{Re} constructed(\eta_{MC}, z_{MC})}{\sum_{i \in v} \# tracklets(\eta_{rec}, z_{rec})}$$

$$EffCorrW(h, z_{v}) = \frac{a}{a} \# prim \operatorname{Re} constructable(h_{MC}, z_{MC})}{a} \# prim \operatorname{Re} constructable(\eta_{MC}, z_{MC})}$$

$$AccCorr(\eta, z_{v}) = \frac{\sum_{i \in v} \# prim \operatorname{Re} constructable(\eta_{MC}, z_{MC})}{\sum_{i \in v} \# prim \operatorname{Detectable}(\eta_{MC}, z_{MC})}$$

$$DisPartCorrW(\eta, z_{v}) = \frac{\sum_{i \in v} \# prim(\eta_{MC}, z_{MC})}{\sum_{i \in v} \# prim(\eta_{MC}, z_{MC})}$$

$$TriggVtxCorrW(\eta, z_{v}) = \frac{\sum_{i \in v} \# prim(\eta_{MC}, z_{MC})}{\sum_{i \in v} \# prim(\eta_{MC}, z_{MC})}$$

SPD + reconstruction algorithm inefficiency

$$EffCorrW(\eta, z_{v}) = \frac{\sum_{i \in v} \# prim \operatorname{Re} constructable(\eta_{MC}, z_{MC})}{\sum_{i \in v} \# prim \operatorname{Re} constructed(\eta_{MC}, z_{MC})}$$

Overall algorithm inefficiency: 2% Detector inneficiency: 13% (15 fully dead half-staves assumed)

 $dN_{ch}/d\eta$ in triggered events with vertex reconstructed

Vertex and trigger corrections

Vertex

Events used in the analysis to fill data matrices: triggered events with vertex in $|z_{recVtx}| < 10$ cm and at least one tracklet reconstructed

Trigger

Two different event classes considered: Inelastic (INEL) and Non Single Diffractive (NSD)

Event level corrections

Final $dN_{ch}/d\eta$ distribution

Final $dN_{ch}/d\eta$ distribution

Conclusions and outlook

\Box dN_{ch}/d η measurement with pixels:

- immediately available with the first data
- status of reconstruction and analysis tools:
 - \checkmark fully developed within the First Physics Task Force
 - \checkmark tested on MC official productions on the CAF
 - "tracklet" algorithm improved (committed to AliRoot v4-17-Release)
 - \checkmark analysis code, continuously updated, committed to AliRoot
 - \checkmark added to the official "analysis train" for the organized analysis

Outlook:

- apply the correction chain to the first data
- complete first physics papers (and try to be first at LHC...)
- \succ extend the analysis tools to the first heavy ion data (ongoing).

Optimized algorithm

1. Find partners

AliITSMultReconstructor

- Loop over all clusters in L0
- For each cluster C0 in L0 loop over clusters in L1
- Find best matching cluster C1 in L1
 - Store C1 as partner to C0
 - If there is already a partner, store only in case the new pair is better (= smaller distance) than the previous stored pair
 - If no partner is found remove C0 from list
- 1. Save tracklets
 - Save tracklets for all pairs
 - Remove used clusters
- 1. Go to 1) until no new tracklets are found

