Quinto Convegno Nazionale sulla Fisica di ALICE Trieste, 12 – 14 Settembre 2009

Selezione di eventi diffrattivi in p-p mediante gli ZDC

Grazia Luparello Università di Torino & INFN Torino

ALICE

Outline

- Detector description
- Simulation ingredients
 - First Physics Production (@ 3.5+3.5 TeV and @ 450+450 GeV)
- ZDC efficiency for the selection of different types of events
- ZDC efficiency vs. N_{ch} particles produced
- Trigger selectivity for single diffractive events
- Conclusions

ZDC Detector (I)

- 2 sets of calorimeters located at the opposite side w.r.t. the IP, 114m away from it
- Spectators neutrons and protons are separated by LHC beam optics
- Each set consists of:
 - 1 Neutron calorimeter (ZN)
 - 1 Proton calorimeter (ZP)
 - 1 forward electromagnetic calorimeter (ZEM) located at 7,5m away from the IP, only on one side

ZDC Detector (II)

- ZDC are "spaghetti" calorimeters with quartz fibers (active material) embedded in a dense absorber
- The principle of operation is based on the detection of Cherenkov light produced in the quartz fibers by charged particles of the shower generated by the hadrons
- Quartz fibers are placed at 0° with respect to the incident particle direction, come out from the rear face of the calorimeter and bring the light to 5 PM
- The charge of the PM analogical signals is converted by ADCs

ALICE

Simulation Ingredients

Evaluate the ZDC efficiency for the selection of different types of events. (Minimum Bias, non diffractive and diffractive)

- Two generators: Pythia 6.214 and Phojet 1.12
- First Physics Productions @ 3.5 + 3.5 TeV (B=0.5 T)
 LHC09b12 (Pythia), LHC09b14 (Phojet)
- First Physics Productions @ 450 + 450 GeV (B=0.5 T)
 - LHC09b8 (Pythia), LHC09b10 (Phojet)

p-p Interactions

No elastic events generated

Non diffractive

Incident hadrons acquire colour and break apart

Diffractive

Incident hadrons retain their quantum numbers remaining colourless

Inelastic and Diffractive Processes

ALICE

Fired detector pattern

- In order to study the ZDC efficiency for different type of events in the offline code a 32 bits word has been implemented in the ESD (fESDQuality in the class AliESDZDC.cxx)
- The right most 6 bits give information about the fired subdetectors
- Bit detector correspondance:

	bit5 ZPC	bit4 ZNC	bit3 ZEM1	bit2 ZEM2	bit1 ZPA	bit0 ZNA
SIDE	A				SID	EC
ZPA		ZEM	1	P	[ZPC
ZNA	A	ZEM	2		[ZNC

Threshold definition

- Starting point: ADC spectra obtained after digitization (AliZDCDigitizer.cxx)
- The PM gains are tuned in order to obtain the end point of the ADC spectra at the channel 1000 independently from beam energy
- Ch. 1000 corresponds to analogical signal amplitude of 1.4 V that is the maximum signal handled by our electronics (200pC)
- Minimum threshold on the signal amplitude fixed at 10 mV (ch. 7 in the ADC spectra)

It corresponds to a 7 ‰ cut w.r.t. the beam energy

1. ZDC efficiency vs. Event Type

G.Luparello

Quinto Convegno Nazionale sulla fisica di ALICE – Trieste, 12 – 14 Settembre 2009

Efficiency vs. event type

Some naming conventions:

Non Diffractive Inelastic Events	ND
Single Diffractive pp->Xp (Side A: Diffractive Mass, Side C: Proton)	SD1
Single Diffractive pp->pX (Side A: Proton, Side C: Diffractive Mass)	SD2
Double Diffractive	DD
Central Diffractive	CD
Minimum Bias ND+SD1 (pp->Xp) + SD2 (pp->pX)+ DD + CD	MB

Efficiency: Pythia 3.5+3.5 TeV, B=0.5T

(LHC09b12-50000Ev)

The ZDCs can detect the leading baryons from the proton that breaks up -> The scattered proton is not detected

	ND	SD1	SD2	DD	MB
		(pp->Xp)	(pp->pX)		
ZNA	34.1 ± 0.3%	53.2 ± 0.7%	1.1 ± 0.1%	54.3 ± 0.6%	35.2 ± 0.2%
ZPA	13.0 ±0.2%	24.0 ± 0.6%	2.2 ± 0.2%	24.3 ± 0.5%	14.4 ± 0.2%
ZEM	76.9 ± 0.2%	47.3 ± 0.7%	19.9 ± 0.6%	40.4 ± 0.6%	64.0 ± 0.2%
ZNAorZPA	41.7 ± 0.3%	65.2 ± 0.7%	2.8 ± 0.2%	65.6 ± 0.6%	43.1 ± 0.2%
ZNAorZPAorZNC orZPC	64.9 ± 0.3%	65.9 ± 0.7%	66.9 ± 0.7%	88.3 ± 0.4%	68.1 ± 0.2%
ZNAorZPAorZNC orZPCorZEM	94.3 ± 0.1%	83.3 ± 0.5%	73.5 ± 0.6%	93.4 ± 0.3%	91.1 ± 0.2%

The ZDC have a good trigger efficiency for all the event type

G.Luparello

Efficiency: Phojet 3.5+3.5 TeV, B=0.5T

(LHC09b14- 50000Ev)

The ZDCs can detect the leading baryons from the proton that breaks up -> The scattered proton is not detected

	ND	SD1	SD2	DD	CD	MB
		(pp->Xp)	(pp->pX)			
ZNA	33.0±0.2%	39.1±0.8%	1.4±0.2%	39.9±0.9%	1.0±0.3%	31.0±0.2%
ZPA	13.4±0.2%	16.5±0.6%	4.0±0.3%	18.5±0.8%	2.7±0.6%	13.4±0.2%
ZEM	75.2±0.2%	63.4±0.8%	21.8±0.7%	60.2±0.9%	28±1%	69.1±0.2%
ZNAorZPA	41.5±0.2%	48.8±0.8%	4.5±0.4%	50±1%	3.2±0.6%	39.2±0.2%
ZNAorZPAor ZNCorZPC	65.9±0.2%	50.1±0.8%	50.4±0.8%	74.2±0.9%	4.6±0.7%	63.0±0.2%
ZNAorZPAorZNCor ZPCorZEM	92.4±0.1%	84.4±0.6%	60.6±0.8%	90.8±0.6%	31±1%	88.4±0.1%

All the event type considered can be detected by ZDC

G.Luparello

Efficiency: Pythia 450+450 GeV, B=0.5T

(LHC09b8-50000Ev)

	ND	SD1	SD2	DD	MB
		(pp->Xp)	(pp->pX)		
ZNA	0.92± 0.05%	2.4 ± 0.2%	0.07 ± 0.04%	2.5 ± 0.2%	1.16 ± 0.05%
ZPA	0.8 ±0.05%	1.3 ± 0.2%	0.8 ± 0.1%	0.9 ± 0.1%	0.84 ± 0.04%
ZEM	57.8 ± 0.3%	45.6 ± 0.7%	14.8 ± 0.5%	42.7 ± 0.7%	49.9 ± 0.2%
ZNAorZPA	1.54 ± 0.07%	3.1 ± 0.2%	0.9 ± 0.1%	3.1 ± 0.2%	1.82 ± 0.06%
ZNAorZPAorZNC orZPC	2.88 ± 0.09%	3.6 ± 0.2%	4.4 ± 0.3%	6.5 ± 0.3%	3.53 ± 0.08%
ZNAorZPAorZNC orZPCorZEM	59.1 ± 0.3%	47.6 ± 0.7%	18.7 ± 0.5%	46.7 ± 0.7%	51.9 ± 0.2%

ZN and ZP have very low efficiency (< 3%).

The overall trigger efficiencies are mainly due to the ZEM.

Efficiency: Phojet 450+450 GeV, B=0.5T

(LHC09b10- 50000Ev)

	ND	SD1 (pp->Xp)	SD2 (pp->pX)	DD	CD	MB
ZNA	0.91±0.05%	1.2±0.2%	0.08±0.04%	1.2±0.2%	0.1±0.1%	0.86±0.04%
ZPA	0.76±0.05%	0.8±0.1%	0.5±0.1%	0.5±0.1%	0.4±0.2%	0.71±0.04%
ZEM	58.5±0.3%	56.2±0.7%	15.1±0.5%	54.2±0.9%	15±1%	52.9±0.2%
ZNAorZPA	1.52±0.06%	1.8±0.2%	0.6±0.1%	1.5±0.2%	0.5±0.2%	1.43±0.05%
ZNAorZPAor ZNC orZPC	3.88±0.09%	2.2±0.2%	2.5±0.2%	4.5±0.4%	0.8±0.3%	2.84±0.07%
ZNAorZPAorZNCor ZPCorZEM	59.9±0.3%	57.5±0.7%	17.1±0.5%	56.4±0.9%	16 ±1%	54.4±0.2%

ZN and ZP have very low efficiency (< 1.5%). The overall trigger efficiency are mainly due to the ZEM.

2. ZDC efficiency vs. N_{ch}

G.Luparello

Quinto Convegno Nazionale sulla fisica di ALICE – Trieste, 12 – 14 Settembre 2009

Efficiency vs. N_{ch} - Pythia MB events (

MB events @ 3.5+3.5 TeV

Trigger requirement: ZNAorZPAorZNCorZPCorZEM

- Black: generated N_{ch} distribution
 - Red: N_{ch} distribution for triggered events
 - $N_{ch} \rightarrow$ number of primary charged particles produced by the generator ($|\eta|$ <1.5)

Efficiency vs. N_{ch} - Pythia ND event

ND events @ 3.5+3.5 TeV

Trigger requirement: ZNAorZPAorZNCorZPCorZEM

- Black: generated N_{ch} distribution
 - Red: N_{ch} distribution for triggered events
 - $N_{ch} \rightarrow$ number of primary charged particles produced by the generator ($|\eta|$ <1.5)

Efficiency vs. N_{ch} - Pythia SD and DD events @ 3.5+3.5 TeV

G.Luparello

Quinto Convegno Nazionale sulla fisica di ALICE – Trieste, 12 – 14 Settembre 2009

Efficiency vs. N_{ch} - Phojet MB events @ 3.5+3.5 TeV

Trigger requirement: ZNAorZPAorZNCorZPCorZEM

- $N_{ch} \rightarrow$ number of primary charged particles produced by the generator ($|\eta| < 1.5$)
- Black: generated N_{ch} distribution
- Red: N_{ch} distribution for triggered events

Efficiency vs. N_{ch} - Phojet ND ev

Multiplicity ND - Phojet

ND events @ 3.5+3.5 TeV

Trigger requirement: ZNAorZPAorZNCorZPCorZEM

- $N_{ch} \rightarrow$ number of primary charged particles produced by the generator ($|\eta| < 1.5$)
- Black: generated N_{ch} distribution
- Red: N_{ch} distribution for triggered events

G.Luparello

Quinto Convegno Nazionale sulla fisica di ALICE – Trieste, 12 – 14 Settembre 2009

22

Efficiency vs. N_{ch} for CD Collisions Phojet @ 3.5+3.5 TeV

Trigger requirement: ZNAorZPAorZNCorZPCorZEM

- $N_{ch} \rightarrow$ number of primary charged particles produced by the generator ($|\eta| < 1.5$)
- Black: generated N_{ch} distribution
 - Red: N_{ch} distribution for triggered events

3. Trigger selectivity

G.Luparello

Quinto Convegno Nazionale sulla fisica di ALICE – Trieste, 12 – 14 Settembre 2009

n distribution for SD events n distribution - All particles generated 2 5000 4000 3000 2000 1000 particles Low signal in ZEM Proton n distribution a 1200 1000 800 600 400 200 No Signal in ZPA \rightarrow Neutron n distribution 350

Pythia@ 3.5+3.5 TeV

Single diffractive events with diffractive mass on C side (SD2)

Generated n distribution for stable

Generated n distribution for protons

Scattered protons in beam pipe

Generated n distribution for neutrons

Diffractive Mass on C side \rightarrow No Signal in ZNA, Signal in ZNC

Single Diffractive event selection Pythia@ 3.5+3.5 TeV

Conclusions

- The ZDCs have a good overall efficiency for the selection of different types of events @ 3.5+3.5 TeV
 - MB overall efficiency Pythia = 91.1 ± 0.2%
 - MB overall efficiency Phojet = 88.4 ± 0.1%
- Efficiencies values are flat over the whole N_{ch} range for all the event types considered
- For SD events (asymmetric), the ZDCs allow the extraction of an events sample with the 50% of purity (Trigger efficiency 52% Non diffractive event rejection 94.8%)
 - The trigger efficiency and the purity of the sample increase at higher beam energies

That's all. Thanks!

G.Luparello

Quinto Convegno Nazionale sulla fisica di ALICE – Trieste, 12 – 14 Settembre 2009

η

ZDC η distribution @ 7+7 TeV

ADC spectra

Efficiency: Pythia @3.5+3.5 TeV, No field

(LHC09b13 - 10000ev)

	Non Diff	Single Diffr (AB->XB)	Single Diffr (AB->AX)	Double Diffr	MB
ZNA	35%	54%	1.5%	56%	35.9%
ZPA	13.6%	25.4%	3.1%	26.6%	15.2%
ZEM	75.5%	45.2%	18.2%	40.8%	62.9%
ZNAorZPA	42.9%	67.6%	3.9%	68.3%	44.3%
ZNAorZPAorZNC orZPC	66.5%	68.1%	65.5%	90%	69.2%
ZNAorZPAorZNC orZPCorZEM	94.3%	82.8%	72%	95%	90.9%

G.Luparello

Quinto convegno Nazionale sulla fisica di ALICE – Trieste, 12 – 14 Settembre 2009

(LHC09b9 - 10000)

	Non Diff	Single Diffr (AB->XB)	Single Diffr (AB->AX)	Double Diffr	MB
ZNA	1.2%	3.3%	0.08%	2.8%	1.5%
ZPA	1.6%	3.1%	1.3%	2.6%	1.8%
ZEM	56.1%	44.9%	15.1%	44.4%	49.7%
ZNAorZPA	2.4%	5,3%	1.4%	4.7%	2.8%
ZNAorZPAorZNCorZ PC	4.2%	6.6%	6.3%	9.3%	5.3%
ZNAorZPAorZNCorZ PCorZEM	58.2%	48.9%	20.1%	50.2%	51.7%

G.Luparello

Quinto convegno Nazionale sulla fisica di ALICE – Trieste, 12 – 14 Settembre 2009

Efficiency @ 7+7 TeV

See General First Physics Meeting 24/06/2009

Pythia	Non Diff	Single Diff AB→XB	Single Diff AB→AX	Double Diff	MB
ZNA	53.7%	65.6%	1.5%	68.8%	52.2%
ZPA	15.5%	22.9%	0.7%	24.5%	16.05%
ZNAorZPA	64.3%	78.8%	2.1%	80.9%	62.4%
ZNAorZPAor ZNCorZPC	85.9%	79.5%	82.0%	96.4%	86.2%
ZNAorZPAor ZNCorZPC orZEM	98.8%	89.1%	84.1%	98.0%	96.5%

Phojet	NonDiff	SingleDiff AB→XB	SingleDiff AB→AX	DoubleDiff	CentralDiff	MB
ZNA	51.9%	56.6%	2.6%	59.9%	1.5%	48.3%
ZPA	15.9%	19.7%	3.4%	24.0%	1.0%	15.4%
ZPAorZPA	63.4%	68.8%	5.2%	76.7%	2.6%	59.4%
ZPAorZPAor	86.5%	69.8%	71.7%	93.6%	4.1%	83.1%
ZNCorZPC						
ZPAorZPAor	97.6%	90.6%	76.7%	98.5%	22.5%	94.3%
ZNCorZPC						
orZEM						

Efficiency vs. N_{ch} - Pythia 7+7 TeV

Plot from General First Physics Meeting - 24/06/2009