

Ó

Reconstruction of D-mesons from three body hadronic decay

Renu Bala University and INFN Torino

Road Map

- Physics Motivation
 - ✓ why do we need many channels?
- Simulation Strategy $\checkmark D^+ \rightarrow K\pi\pi$ $\checkmark D_s \rightarrow KK\pi$

Summary

Tools used for the Analysis
 Grid Analysis FrameWork

Physics Motivation

 To measure charm yield more precisely, we need to measure as many channels as we can.

* reduces the systematic error on the absolute cross-section

Study of different ways of hadronization:

String fragmentation:
 D_s⁺ (cs) / D⁺ (cd) ~ 1/3

it should be easier to take a light meson from vacuum than strange one.

Recombination:

 $D_{s^{+}}(cs) / D^{+}(cd) \sim N(s)/N(d) (\sim 1 \text{ at LHC})$

recombination occurs inside the medium.

D Mesons: Main features

		D 🛛	D +	D _s +
	xpected abundance per event (0-5% Pb-Pb0 5.5 'eV)from NLO QCD+binary scaling (h <0.9)	28	8	5
Ι	ecay Channel	K⁻π⁺	K ⁻ π⁺π⁺	K⁻K⁺π⁺
E	ranching Ratio	3.89%	9.2%	5.5%
ŧ	charged body	2	3	3
‡ n £	of com binations in full ass range for dN /dy = 0000 (with idealPID)	10 ⁶ pairs	10 ⁹ triplets	10 ⁸ triplets
I	ecay length	123µm	312µm	150µm
F	esonantchannel		$\checkmark D^{+} \to K^{0*} \pi^{+} \to K^{-} \pi^{+} \pi^{+}$	$V = D_{s}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{-}K^{+}\pi^{+}$ $D_{s}^{+} \rightarrow K^{0*}K^{+} \rightarrow K^{-}K^{+}\pi^{+}$

D⁺→Kππ: Selection Strategy: invariant-mass analysis of fully-reconstructed topologies originating from displaced vertices

Various selection steps have been applied to extract the signal from the large combinatorial background

- ✓ Distance between primary and secondary vertex (d_{ps})
- Cosine of pointing angle (Cosθ_p), where
 θ_p is the angular distance between the reconstructed D+ momentum and D+ flight line.
 - ✓ Sum of squared impact parameters $s=d_{01}^{2}+d_{02}^{2}+d_{03}^{2}$
 - ✓ Max pt among the 3 tracks: $p_M = Max{p_{T1}, p_{T2}, p_{T3}}$

Expected Result Significance (D⁺→Kππ)

 \checkmark Significance S/JS+B normalized to 10⁷ events for Pb-Pb and 10⁹ events for pp

$D_s \rightarrow KK\pi$: Selection Strategy

- Five variables have been chosen to perform a final selection of the useful signal:
 - ✓ Cosine of pointing angle $(Cos \Theta_p)$. If the found vertex really corresponds to D_s decay vertex, then Θ_p ~ 0 and $Cos \Theta_p$ ~1.
 - ✓ Cos□_{opening}, where □_{opening} is the angle between two opposite sign tracks.

- Sum of the squares of the three tracks impact parameters with respect to the primary vertex.
- ✓ Distance between the primary and secondary vertices

✓ Dispersion of secondary vertex (additional tunning) NB: Before these, cuts on invariant mass of KK pair to select resonant decays through Φ or K π (opposite sign) to select resonant decays through K^{0*} is applied.

Significance ($D_s \rightarrow KK\pi$)

Significance S/JS+B normalized to $10^7\,\rm events$ for Pb-Pb and $10^9\,\rm events$ for pp

Software tools for the analysis on the Grid

- Three kinds of data analysis
 - Fast pilot analysis of the data "just collected" to tune the first reconstruction at CERN Analysis Facility (CAF)
 - Scheduled batch analysis on the Grid (ESDs and AODs)
 - End-user interactive or batch analysis using GRID (AODs and ESDs)

AODs produced on the Grid

✓ 48M min-bias pp events (LHC09a4)

/alice/cern.ch/user/m/mgheata/analysisESD/output_train _default_28May2009_09h33/.

7M pp charm, forced to hadronic decays, events(LHC09a5)

/alice/cern.ch/user/m/mgheata/analysisESD/output_train _LHC09a5_11Jun2009_10h07/

✓ 1.4M, pp beauty, $B \rightarrow J/\Psi \rightarrow ee$ decay(LHC09a6)

/alice/cern.ch/user/m/mgheata/analysisESD/output_train _default_26May2009_16h30/

Analysis of candidates from AODs

- RunAnalysisAODVertexingHF.C (Prepared by A. Dainese): a steering macro to analyze the AODs (Standard + vertexingHF)
- This macro creates the analysis manager + event handlers, defines the input data and analysis mode.
- Each task provided by a macro AddTaskXXX.C.
- We have 12 tasks (wagons) included in RunAnalysisAODVertexingHF.C (Train)

AddTaskDplus (To extract D⁺ from the background)

- The macro AddTaskDplus.C implements a method AliAnalysisTaskSEDplus *AddTaskDplus() which creates, configure and connect the task to an existing analysis manager
- AliAnalysisManager *mgr =
 AliAnalysisManager::GetAnalysisManager();
- AliAnalysisTaskSEDplus *dplusTask = new AliAnalysisTaskSEDplus("DplusAnalysis");
- mgr->AddTask(dplusTask);
- Produce some histogram as well as ntuple for signal and background (D+) in the root files "InvMassDplus.root InvMassDplus_nt1.root, InvMassDplus_nt2.root"

P-P charm(~4M) events (lhc09a5)→loose cuts (default ConfigVertexingHF.C)

P-P charm(~4M) events (lhc09a5) →with tighter cuts i.e Pointing Angle > 0.97 and decay length > 0.1cm

PP min bias (lhc09a4) ~17M events→ loose cuts

PP min bias (lhc09a4) events \rightarrow with tighter cuts

Sig+BKG

Signal

BKG

M (GeV)

Pt (GeV/c)

Significance (lhc09a4) with tighter cuts

Decay Length

Like Sign Triplet

- For background subtraction, we are exploring the feasibility to use LS triplet
- Compare positive (+++) LS background with negative (---) background. They should provide the same result
- Compare LS background with OS (+-+) background.

LS vs OS behaviour

- The shape of the distribution around the D+ mass is same.
- OS is bit smaller(less statistics?)

Summary

- A huge statistics required to extract the signal from large background.
- Grid facilities provides the computing resources and disc space required.
- Analysis Train to analyze the data on the Grid has been developed and validated
- Analysis is feasible with good significance of exclusive Dmesons reconstruction at wide pt range(1<pt<20 GeV/c) within 1 year of data taking at nominal luminosity

Thanks