

Misura di J/ψ nello Spettrometro per Muoni in p-p

Roberta Arnaldi, Livio Bianchi, Enrico Scomparin Universita degli Studi di Torino ti INFN Forino

Quinto Convegno Nazionale sulla Fisica di ALICE

Trieste 12-14 September 2009

16/09/09

Outlook

Physics motivations for J/[] study in p-p

The ALICE Muon Spectrometer

First J/[] paper analysis

The polarization issue

Fare clic per modificare lo stile del sottotitolo dello schema

Quinto Convegno Nazionale sulla Fisica di ALICE

J/ψ in pp: physics motivations (I)

C (00) (00)

ivio Bianchi

J/ψ in pp: physics motivations (II)

Fare clic per modificare lo stile de schema CSM+ s-channel cut (NNLO perturbative calculation): describes polarization data from PHENIX at midrapidity. Still problems at forward rapidity.

1 C (00 (00

Muon Spectrometer: Setup

Front absorber
 Beam Shield
 tile del pipole magnet ([Bdl=3Tm))
 5 tracking stations (MWPCs with bi-cathode pad readout): spatial resolution below 100 [m in the bending plane, around 700 [m in the non-bending plane
 Iron wall (muon filter)

2 trigger stations (4 planes of

Quinto Convegno Nazionale sulia Fisica di ALICE

10000

Muon Spectrometer: cosmic run

First curved cosmic muon event (tracked and triggered)

Nice view!

But we expect more than 90 elcouples of this tracks per hour coming from J/[]s during the first run of LHC...!*

*actually this number refers to the trigger rate.

Quinto Convegno Nazionale sulla Fisica di ALICE

G 120

Muon Spectrometer: performances

10000

Quinto Convegno Nazionale sulla Fisica di ALICE

First Analysis

Assuming 340[10-3 Hz J/[] trigger rate low pT at L=3[]1030 cm-2 s-1 (ALICE-INT-2006-0002), at L=2.3[]1029 cm-2 s-1 we expect: J/[] trigger rate ~ 26 []10-3 Hz

Assuming 12% running efficiency (F. Antinori - Physics Forum July 2009) we expect from 104 to 4[104 J/]s in the first 5 months

For 104 J/ \Box s we expect 100 J/ \Box s with pT >11 GeV \Box Good for differential studies! Which measurements can be performed with this statistics? production cross section del sottotitolo dello J/ differential cross section · J/ polarization (integrated over the other kinematical variables?) First I/ Integrated cross section CD CD Paper based on Differential cross section 889 J/□ F pifferential cross section PHENI Paper based on 65 J/[] in d∏/dpT, d∏/dy $\mathbf{u} + \mathbf{u} =$

Other LHC experiments

schema

ATLAS:

- -2.5 < [] < 2.5
- mass resolution ~ 50MeV
- prompt J/[]s separated with fit to proper time distribution
- 104 J/□ for 1pb-1 at \sqrt{s} =10TeV (high pT trig)
- can cover the full cos range reaching very high
 PMS:

- mass resolution ~ 30MeV
- $^{\circ}$ 2[104 J/[] for 1pb-1 at pers=10TeV (high pT trig) sottotitol(

LHCb:

- > 2 < [] < 5.5
- vertex tracking detector (VELO) covering the forward region ->very good mass resolution [(M)~ 11MeV
 2[105 J/[] for 1pb-1 at √s=10TeV (larger acc.)

Polarization: basic concepts

The polarization of Quarkonium is gleaned through the analysis of the angular distribution of daughter particles (e.g. $\mu + \mu$ -) which follows the trend:

J/psi polarization in pp:

High S/B: bkg. neglection

state	$S(\times 10^{3})$	$B(\times 10^{3})$	S/B	$S/\sqrt{S+B}$
J/ψ	2807	235	12.0	1610
ψ'	75	120	0.62	170
Υ	27.1	2.6	10.4	157
Υ'	6.8	2.0	3.4	73
Υ"	4.2	1.8	2.4	55

3-D acceptance correction: flat y,

The correction has to be made in fiducial regions where the 3D acceptance do not range over too many orders of magnitude.

Quinto Convegno Nazionale sulla Fisica di ALICE

J/[polarization in pp@14TeV

```
Luminosity = 3 1030
cm-2 s-1
time = 107 s
J/[] = 2.8 106
```

The number of J/[] is enough to perform a detailed study as a function of pT.

Assuming 200000 reconstructed J/ \Box in p-p @ 14 TeV (all the statistics we have) 1 < nT < 4 GeV/c: $\Box =$

when injecting []=0 we get:

- 1<pT<4 GeV/c: □ = -0.02 ± 0.02
- 4<pT<7 GeV/c: [] =

Fare clic per modificare lo stil0.03 ±00.04 tolo dello

•The backg Wond controbution is ± 0.05 estimated by: •Adding CORR+UNCORR bkg to the J/[] peak; •Using the MC Templates method* to Subtract of (See The recesser) estimation depends on [] itself (in

*Robert J. Cropp, A Measurement of the Polarization of J/psi Mesons Produced in High-Energy pp Collisions ,

Quinto Convegno Nazionale sulla Fisica di ALICE 2000

J/psi polarization in PbPb@5.5A

In this case the Bkg cannot be neglected. New method for Fare clic per modificate of stile del sottotitolo dello

schemaLuminosity = 5 1026cm-2 s-1time = 106 s J/\Box = 133000 (centralevents) J/\Box = 21700 (peripheralQuinto Convegno Nazionale sulla Fisica di ALICE

Υ polarization in pp: performances

Υ polarization in pp: performances

Υ polar. in PbPb: MC Template

•Sample divided in 20 cos[] bins;

 For each cos bin a mass spectrum is done and fitted;

•The fits allow the evaluation of the bkg. (B) and of the signal+bkg (S+B) contributions;
•The values of B and S+B are plotted in a cos□ spectrum;

Υ polarization in PbPb:

 $n \cap n \cap n$

The S+B cos θ spectrum is fitted with a linear superposition of two templates (one transversly polarized and one longitudinally) plus the Bkg contribution; The coefficients of the linear superposition give the value of α .

$$\left\{ \begin{bmatrix} 1-\alpha\\ 3+\alpha \end{bmatrix}, T_{L}(\cos\vartheta) + \begin{bmatrix} 2(1+\alpha)\\ 3+\alpha \end{bmatrix}, T_{T}(\cos\vartheta) + Bkg(\cos\vartheta) = F_{S+B}(\cos\vartheta) \right\}$$

Polarization in PDC09 (pp @10TeV)

Id	cycle	description	software	run range	events per sub-run	events produced	status	request
91	LHC09a10	diµ trigger, w/o polarization, residual	v4-17-Rev-04 (root: v5-24-00, geant3: v1-11)	100400 to 100436	100	3420400	completed	2.10%
94	LHC09a11	diµ trigger, pol. (.3/.3/0./1./0), residual	v4-17-Rev-05, (root: v5-24-00, geant3: v1-11)	101014 to 101018	100	475400	completed	4 10 ⁵
95	LHC09a12	diµ trigger, pol. (3/3/0./1./0.), residual	same as 94	102000 to 102005	100	270000	completed	4 10 ⁵
96	LHC09a13	diµ trigger, pol. (0./0./0./1./0.), residual	same as 94	103000 to 103005	100	371900	completed	4 10 ⁵
98	LHC09a16	diµ trigger, w/o pol, full, secret deadmaps & x- sect.	same as 94	111001 to 111005	100		not yet started	4105
99	LHC09a17	1µ trigger, full, w/o field	same as 94	112001 to 112008	100	662700	completed	6105
100	LHC09a18	min. bias, w/o pol., residual	same as 94	113001 to 1000001	400	9856800 (until 113040)	runnning	2.108

nicole.bastid @ clermont.in2p3.fr, aug 23th

In particular 3 productions with polarized quarkonia:

- LHC09a11: $\Box / \Box = 0.3$, $\Box \Box' = 0.3$, $\Box \Upsilon = 0.$, $\Box \Upsilon' = 1.$, $\Box \Upsilon'' = 0.$ - LHC09a12: $\Box / \Box = -0.3$, $\Box \Box' = -0.3$, $\Box \Upsilon = 0.$, Simulation done using AliGenMUONCocktail pp:

Pythia mBias

-5 resonances

Open heavy flavors.

The polarization is given using AliDecayerPolarized. It can be set with different values to each resonance. Only the cos[] spectrum can be

Polarization analysis from PDC09

Quinto Convegno Nazionale sulla Fisica di ALICE

Conclusions and Ongoings

<u>Conclusi</u>

The muon spectrometer of the ALICE experiment is ready to take data – cosmic runs show good performances of the entire detector.

The first J/ \Box paper could be done using statistics of 104 events (less than 5 monts of data taking) allowing the study of integrated and differential (d \Box /dpT, d \Box /dy) cross sections and (maybe) an integrated over pT value of polarization.

The polarization analysis can be done both in pp and PbPb. The bkg contribution has been studied and, at least in the second case, a bkgsche subtraction strategy has to be implemented.

A first look to PDC09 data gives encouraging results. Full analysis of PDC09 data (polarization & pT/y spectra)

Study of B[]J/[]+X contribution to the cos[] spectrum

Backup Slides

Fare clic per modificare lo stile del sottotitolo dello schema

16/09/09

Muon spectrometer parameters (I)

Muon detection			
Polar, azimuthal angle coverage	$2\leqslant heta\leqslant$ 9, 2π		
Minimum muon momentum	4 GeV/c		
Resonance detection	J/ψ	Ϋ́	
Pseudo-rapidity coverage	$-4.0\leqslant\eta\leqslant-2.5$	$-4.0\leqslant\eta\leqslant-2.5$	
Transverse momentum range	$0 \leqslant ho_{ m t}$	$0\leqslant ho_{ m t}$	
Mass resolution	70 MeV	100 MeV	
Front absorber			
Longitudinal position (from IP)	$-5030mm \leqslant z \leqslant -900mm$		
Total thickness (materials)	10λ (carbon-concrete-steel)		
Dipole magnet			
Nominal magnetic field, field integral	0.7 T, 3 Tm		
Free gap between poles	2.972 – 3.956 m		
Overall magnet length	4.97m		
Longitudinal position (from IP)	-z = 9.87m (centre of the dipole yoke)		
Tracking chambers			
Number of stations, number of planes per station	5, 2		
Longitudinal position of stations	-z = 5357, 6860, 9830, 12920, 14221 mm		
Anodecathode gap (equal to wire pitch)	2.1 mm for st. 1; 2.5 mm for st. 2-5		
Gas mixture	80%Ar/20%CO ₂		
Pad size st. 1 (bending plane)	ing plane) $4 \times 6, 4 \times 12, 4 \times 24mm^2$		
Pad size st. 2 (bending plane)	5 $ imes$ 7.5, 5 $ imes$ 15, 5 $ imes$ 30mm ²		
Pad size st. 3, 4 and 5 (bending plane)	5 $ imes$ 25, 5 $ imes$ 50, 5 $ imes$ 100 mm^2		
Max. hit density st. 15 (central PbPb $ imes$ 2)	5.0, 2.1, 0.7, 0.5, $0.6 \cdot 10^{-2}$ hits cm^{-2}		
Spatial resolution (bending plane)	\simeq 70 μ m		

10000

ivio Bianchi

Muon spectrometer parameters (II)

Tracking electronics	
Total number of FEE channels	$1.09 imes 10^{6}$
Shaping amplifier peaking time	1.2 μ s
Trigger chambers	
Number of stations, planes per station	2, 2
Longitudinal position of stations	-z = 16 120, 17 120 mm
Total number of RPCs, total active surface	72, $\sim 150m^2$
Gas gap	single, 2 mm
Electrode material and resistivity	Bakelite $^{ extsf{TM}}$, $ ho = 24 imes 10^9$ cm
Gas mixture	$Ar/C_2H_2F_4$ /i-butane/ SF_6 ratio 49/40/7/1
Pitch of readout strips (bending plane)	10.6, 21.2, 42.5 mm (for trigger st. 1)
Max. strip occupancy bend. (non bend.) plane	3%(10%) in central Pb-Pb
Maximum hit rate on RPCs	3 (40) Hz <i>cm</i> ⁻² in Pb-Pb (Ar-Ar)
Trigger electronics	
Total number of FEE channels	$2.1 imes 10^4$
Number of local trigger cards	234 + 2

Font: ALICE Physics Performance Report Vol. I, J. Phys. G: Nucl. Part. Phys. 30 (2004)

1 C 100 100

D C

Production mechanism

JPL, J.R. Cudell, Yu.L. Kalinovsky, PLB633:301,2006

100000

Quinto Convegno Nazionale sulla Fisica di ALICE

D C

The LHCb Detector

The ATLAS Detector

The CMS Detector

10000

Quinto Convegno Nazionale sulla Fisica di ALICE

DG

Preparing Data Samples (I)

• Signal: $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ samples generated with AliGenParam and reconstructed with full-simulation. Generation done with several degrees of polarization: -1, -0.5, 0, 0.5, 1. · Correlated Background: generated with Pythia by Rachid Guernane* and reconstructed with fast simulation Uncorrelated Background: generated through parametrization and reconstructed with the fast simulation pproach (seackground negligible in 8-12 1, 3 and 5 years of data taking have been considered *ALICE-INT-2005-018 (L= 5 0 1026 cm - 2 s - 1)

version 1.0

Preparing Data Samples (II)

The relative weights of correlated and uncorrelated bkgs have been taken from Smbat Grigoryan's work, published in PPR-Vol.2

The contribution of each type of bkg is different in the 5 centrality classes: 5 different data samples have been prepared for each polarization

 $\Delta \Delta / \Delta \Delta$

We did all the work integrating over the impact parameter, but in the future a study of the centrality dependence of the α parameter could be done using the same generated data

Quinto Convegno Nazionale sulla Fisica di ALICE

DΟ

Angular distribution fit: error on α

With the same number of reconstructed fitting method if évents1-the then for p0 large erpor d/po a increases while a

Bias on high values of []

In peripheral $\cos\theta$ bins we sometimes underestimate the background

<u>Central cosθ bins:</u> the Bkg shape seems to be perfectly exponential -> the <u>contribution is well</u> Only for high values of α because in that case the shape of the cosθ depends more directly on the <u>behaviour of the most</u>

<u>Edges of the cosθ</u> <u>distribution:</u> the Bkg shape is not exponential -> the contribution is The standard for the wider α is bigger

D10

Fit of the cos[] spectrum:

Template fit to the cos θ spectrum done with MINUIT minimizing the quantity: $\chi^2 = 2 \cdot \sum_{i=1}^{n} \left\{ (E_i + \beta_i - D_i) - D_i \cdot \ln\left(\frac{E_i + \beta_i}{D_i}\right) + (\beta_i - S_i) - S_i \cdot \ln\left(\frac{\beta_i}{S_i}\right) \right\}$

where

$$\beta_i = \frac{1}{4} \left[-(2E_i - D_i - S_i) + \sqrt{(2E_i - D_i - S_i)^2 + 8S_iE_i} \right]$$

 D_i : Signal + Bkg events S_i : Bkg events

- E_i : expected number of Signal events
- β_i : expected number of Bkg events

The formula is correct when signal+background and background errors are both poissonian. We suppose background errors to be poissonian: not completely correct because not obtained from an event

counting technique. Correlations from Systematic Corrections to Poisson-Distributed Data in Log-Likelihood Functions, CDF public note CDF/DOC/JET/PUBLIC/3126 (1995)

Quinto Convegno Nazionale sulla Fisica di ALICE

D11

How to study polarization

The polarization of Quarkonium is gleaned through the analysis of the angular distribution of daughter particles (e.g. $\mu + \mu$ -) which follows the trend:

$$\xi_{L} = \frac{\sigma_{L}}{\sigma_{TOT}} = \frac{1-\alpha}{3+\alpha}$$

$$\xi_{T} = 1-\xi_{L}$$

$$\frac{d\Gamma}{d\cos\theta^{*}} \propto \frac{3}{2(\alpha+3)}(1+\alpha\cos^{2}\theta^{*})$$

$$\alpha = \alpha$$

$$\alpha = 1$$
Transverse
polarization
$$\alpha = \alpha$$

The angular distribution is usually analyzed in the Υ C.M. frame. Polarization angle defined as the angle between μ + momentum and a "polarization axis" which can be chosen in different ways on We use the helicity (HE) reference frame, in which the z-axis is the direction of the Υ momentum in the p-p C.M. frame. Quinto Convegno Nazionale sulla Fisica di ALICE