$D^0 \rightarrow K\pi$ analysis in p-p

C. Bianchin, A. Dainese, D. Caffarri, A. Rossi

13th September 2009

Quinto convegno nazionale sulla fisica di ALICE

- Introduction: recent results about heavy flavour @ RHIC
- Tools and results for the analysis of the D^0
- Feed down from B
- Summary

Heavy Flavor tasks in ALICE

- p-p collisions are the benchmark
 - test pQCD at small-x and large p_T
- Pb-Pb
 - ► High p_T quarks in a hot medium like a QGP experience an energy loss due to re-scattering and gluon radiation
 - Energy loss and in-medium hadronization are known as final state effects
- The presence of a nucleus in the initial state changes the shape of the Parton Distribution Functions (shadowing) and lead to initial state multiple-scattering (k_T broadening and Cronin Effect)
 - This initial state effects can be studied in p-A collisions

Heavy Flavor tasks in ALICE

- p-p collisions are the benchmark
 - test pQCD at small-x and large p_T
- Pb-Pb
 - ► High p_T quarks in a hot medium like a QGP experience an energy loss due to re-scattering and gluon radiation
 - Energy loss and in-medium hadronization are known as final state effects
- The presence of a nucleus in the initial state changes the shape of the Parton Distribution Functions (shadowing) and lead to initial state multiple-scattering (k_T broadening and Cronin Effect)
 - This initial state effects can be studied in p-A collisions
- Charm/Beauty energy loss is expected to be suppressed w.r.t. light ones due to the dead cone effect $(\theta_g > \frac{M_Q}{E_O})$

•
$$\langle \Delta E \rangle = \alpha_s C_R \hat{q} L^2$$

Heavy Flavor tasks in ALICE

- p-p collisions are the benchmark
 - test pQCD at small-x and large p_T
- Pb-Pb
 - ► High p_T quarks in a hot medium like a QGP experience an energy loss due to re-scattering and gluon radiation
 - Energy loss and in-medium hadronization are known as final state effects
- The presence of a nucleus in the initial state changes the shape of the Parton Distribution Functions (shadowing) and lead to initial state multiple-scattering (k_T broadening and Cronin Effect)
 - This initial state effects can be studied in p-A collisions
- Charm/Beauty energy loss is expected to be suppressed w.r.t. light ones due to the dead cone effect $(\theta_g > \frac{M_Q}{E_Q})$

• $\langle \Delta E \rangle = \alpha_s C_R \hat{q} L^2$

• Because $m_q \ll m_{c,b}$ study B(bq) and D(cq) spectra means study the scattering of c, b in the medium

Study of the hot medium @ RHIC

•
$$R_{AA} = \frac{1}{N_{coll}} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$$

- π^0 suppression of a factor 5 at high- p_T
- Direct photons do not experience suppression

Heavy flavour electrons @ RHIC

- STAR and PHENIX measure heavy flavour decays in e[±]X detecting the "nonphotonic" electrons
- Other sources of electrons are:
 - "photonic" background from Dalitz decays and photon conversions
 - nonphotonic background from $K \rightarrow e \pi \nu$ and dielectron decays of vector mesons (smaller)
- Background subtraction (PHENIX)
 - "Converter subtraction" method
 - "Cocktail subtraction" method

Heavy flavour electrons @ RHIC

- STAR and PHENIX measure heavy flavour decays in $e^{\pm}X$ detecting the "nonphotonic" electrons
- Other sources of electrons are:
 - "photonic" background from Dalitz decays and photon conversions
 - nonphotonic background from $K \rightarrow e \pi \nu$ and dielectron decays of vector mesons (smaller)
- Background subtraction (PHENIX)
 - "Converter subtraction" method
 - "Cocktail subtraction" method

- After background subtraction:
- Central Au-Au STAR and PHENIX data inclusive c+b

Charm and bottom contribution

Hees-Mannarelli-Greco, PRL100 (2008)

- Significant contribution from bottom is expected at large p_T
- ALICE will help to disentangle B and D contribution in the R_{AA} and v₂ spectra thanks to the higher b cross section and the vertex detector.

pQCD NLO + EKS98	SPS PbPb Cent	RHIC AuAu Cent	LHC PbPb Cent
CC	0.2	10	115
bb	-	0.05	5

$D^0 \rightarrow K\pi$ from STAR

$D^0 \rightarrow K\pi$ from STAR

- STAR performed also measurements of $D^0 \rightarrow K\pi$ identifying K and π from dE/dx and tracking with the TPC
- No D^0 vertex separation, large combinatorial background even after subtraction, no $R_{AA}(p_T)$

- A recent result using the silicon tracker was presented
- The background is estimated by fitting a 4th order polynomial to side bands and subtracted
 - \star signal \sim 3000
 - ***** signal/bkg = 0.006

$$\star \ \sigma = s/\sqrt{s+b} = 4.5$$

Elliptic flow

- v_2 scales with number of constituent (valence) quarks \Rightarrow flow is partonic!
- Hydrodynamics with viscosity fits data

Elliptic flow

- v_2 scales with number of constituent (valence) quarks \Rightarrow flow is partonic!
- Hydrodynamics with viscosity fits data
- Heavy-flavour v_2 shows that c and b are strongly coupled with medium
- More studies on heavy quark's v_2 can establish the level of thermalization reached

HF Analysis in ALICE

• D mesons can be studied in different hadronic decay channels $D^0 \rightarrow K^- \pi^+$ $K^- \pi^+ \pi^- \pi^+$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^+_s \rightarrow K^+ K^- \pi^+$

HF Analysis in ALICE

- D mesons can be studied in different hadronic decay channels $D^0 \rightarrow K^- \pi^+$ $K^- \pi^+ \pi^- \pi^+$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^+_{\epsilon} \rightarrow K^+ K^- \pi^+$
- In this talk I'll report some results about the D^0 meson
 - $D^0 \rightarrow K\pi$ (B.R. 3.8%) invariant mass distribution and fit
 - Separation of B contribution to D⁰ yield (Andrea Rossi)

HF Analysis in ALICE

- D mesons can be studied in different hadronic decay channels $D^0 \rightarrow K^- \pi^+$ $K^- \pi^+ \pi^- \pi^+$ $D^+ \rightarrow K^- \pi^+ \pi^+$ $D^+_c \rightarrow K^+ K^- \pi^+$
- In this talk I'll report some results about the D^0 meson
 - $D^0 \rightarrow K\pi$ (B.R. 3.8%) invariant mass distribution and fit
 - Separation of B contribution to D⁰ yield (Andrea Rossi)

GENERAL PROCEDURE

- An invariant mass analysis is performed to estimate signal and background yields
 - Extract the signal with a fit
- Study variables that select secondary vertex such as the pointing angle and the product of impact parameters

• Have a look to the $D^0
ightarrow K\pi$ decay with the Event Display

- Have a look to the $D^0
 ightarrow K\pi$ decay with the Event Display
- * Davide Caffarri developed the Event Display tool for the HF
- Little "how to"
 - cd into the directory containing the ESD, the AOD and the AOD friend files
 - ► type alieve
 - Load the AOD friend: AliEveEventManager::AddAODfriend("AliAOD.VertexingHF.root")
 - Run the macro that scans the event: .x visscan_init.C
 - Execute the macro that starts from the AOD.VertexingHF selecting the candidates and creating the EVE objects: .x aod_HF.C

General view of the event

Zoom on the HF decay

Details

2D display with the position of the secondary

3D rotaiting display with only the selected HF decay.

Some details about D⁰ features.

• Plot invariant mass

- Plot invariant mass
- Fit side-bands with a linear/polynomial/exponential function

- Plot invariant mass
- Fit side-bands with a linear/polynomial/exponential function
- Let's put it grey and over all range

- Plot invariant mass
- Fit side-bands with a linear/polynomial/exponential function
- Let's put it grey and over all range
- \bullet Use these parameters to fit signal (Gaussian) + background

- Plot invariant mass
- Fit side-bands with a linear/polynomial/exponential function
- Let's put it grey and over all range
- Use these parameters to fit signal (Gaussian) + background
- Recalculate the background function with the final parameters

Select promising cut variables looking at the distributions for signal and background

- Select promising cut variables looking at the distributions for signal and background
- **Q** Cuts tuning (not yet performed with recent simulations)
 - The method to select the cut value depends on the capability of the variable to select signal.
 - Definition of significance $\doteq S/\sqrt{S+B}$
 - ► The optimization of the significance is used to tune the value of the cut

- Select promising cut variables looking at the distributions for signal and background
- **Q** Cuts tuning (not yet performed with recent simulations)
 - The method to select the cut value depends on the capability of the variable to select signal.
 - Definition of significance $\doteq S/\sqrt{S+B}$
 - ► The optimization of the significance is used to tune the value of the cut
- Fit of the invariant mass distribution

- Select promising cut variables looking at the distributions for signal and background
- **Q** Cuts tuning (not yet performed with recent simulations)
 - The method to select the cut value depends on the capability of the variable to select signal.
 - Definition of significance $\doteq S/\sqrt{S+B}$
 - ► The optimization of the significance is used to tune the value of the cut
- **③** Fit of the invariant mass distribution
 - All the results presented are from a sample of 38M events of the production LHC09a4 = p-p $\sqrt{s_{NN}} = 10$ TeV minimum bias

Select cut variables: Impact parameter

- d₀ for the two particles doesn't select very well the signal
- The product of the two is more promising

Select cut variables: Distance of closest approach

- The DCA is near to zero for the tracks coming from the same vertex
- Many background tracks can come from primary vertex \mapsto little DCA
- Anyway selection feasible

Select cut variables: Pointing angle

- Angle between the direction primary-secondary vertex and the sum of the momentum vectors of the decaying particles
- Very useful cut as it selects mostly tracks from secondary vertex

Correlation between $\cos \theta_{Point}$ and $d_0 \times d_0$

- At little \mid $d_0 \times d_0 \mid$ and $cos heta_{Point}$ near to one the signal is dominant
- This two variables together can select the secondary vertex

Correlation between $\cos \theta_{Point}$ and $d_0 \times d_0$

- At little $\mid d_0 \times d_0 \mid$ and $cos \theta_{Point}$ near to one the signal is dominant
- This two variables together can select the secondary vertex
- The cut values are still not optimize ... work in progress!

• The aim of this study is to find a(nother) method to subtract background

- The aim of this study is to find a(nother) method to subtract background
- * Thanks to Carmelo Di Giglio for the task!

- The aim of this study is to find a(nother) method to subtract background
- * Thanks to Carmelo Di Giglio for the task!
- Comparison between "like sign" pair and "opposite sign" background distributions
 - Check if the two different types of background have the same shape
 - If it is like this one can use LS pairs to subtract background in the invariant mass distribution

- The aim of this study is to find a(nother) method to subtract background
- * Thanks to Carmelo Di Giglio for the task!
- Comparison between "like sign" pair and "opposite sign" background distributions
 - ► Check if the two different types of background have the same shape
 - If it is like this one can use LS pairs to subtract background in the invariant mass distribution
- Cuts have been applied
- RED: all particle selected as D_0
- BLACK: all pairs like sign selected

Conclusion on "like sign"

- In this case a sample of 25M events has been used
- The distributions for LS pairs and OS background are compatible for all the considered variables
- This method is promising, work in progress

Tool for the mass fitting

- AliHFMassFitter (\$ALICE_ROOT/PWG3/vertexingHF) performs invariant mass fit for the D mesons
- For the moment is has been tested with D^0 and D^+

Tool for the mass fitting

- AliHFMassFitter (\$ALICE_ROOT/PWG3/vertexingHF) performs invariant mass fit for the D mesons
- For the moment is has been tested with D^0 and D^+

Preliminary study:

- Preliminary studies on known histograms are performed to test the fitter and to estimate the **systematic errors** with different functions;
- Signal histogram is obtained smearing a **gaussian** function with a Poissonian distribution;
- Background histogram is obtained smearing an **exponential** function with a Poissonian distribution;
- The fitter had been applied on a sample of data (D⁰ so far) to estimate the efficiency on the determination of parameters through the Monte Carlo.

Systematic error on S

linear

poli2

- Blue stars in upper plot are the sigma of the residuals intS_{fit} - intS_{true} histograms;
- Pink squares are the relative errors from fit;
- Green circles are $\frac{\sqrt{S+B}}{S}$ that is $\frac{1}{significance}$.

D^0 invariant mass fit (I)

- Set of cuts applied
- $\triangleright \ p_{\mathcal{T}} < 1 \ \text{GeV}/\text{c}$

dca [cm]	$\cos \theta^*$	$p_T(K)$ [GeV/c]	$p_T(\pi)$ [GeV/c]	d ₀ (K) [cm]	$ d_0(\pi) $ [cm]	$ d_0 \times d_0 [cm^2]$	$\cos \theta_{point}$
0.04	0.8	0.5	0.5	0.05	0.05	-0.00025	0.7

 $hinspace 1 < p_T < 3 \text{ GeV/c}$

dca [cm]	$\cos \theta^*$	$p_T(K)$ [GeV/c]	$p_T(\pi)$ [GeV/c]	d ₀ (K) [cm]	$ d_0(\pi) $ [cm]	$ d_0 \times d_0 [cm^2]$	$\cos \theta_{point}$
0.02	0.8	0.7	0.7	1.	1.	-0.00025	0.8

 $hinspace 3 < p_T < 5 \text{ GeV/c}$

dca [cm]	$\cos \theta^*$	$p_T(K)$ [GeV/c]	$p_T(\pi)$ [GeV/c]	d ₀ (K) [cm]	$ d_0(\pi) $ [cm]	$ d_0 \times d_0 \; [cm^2]$	$\cos \theta_{point}$
0.02	0.8	0.7	0.7	0.05	0.05	-0.00015	0.8

 $\triangleright \ p_{\mathcal{T}} > 5 \ \text{GeV}/c$

dca [cm]	cosθ*	$p_T(K)$ [GeV/c]	$p_T(\pi)$ [GeV/c]	d ₀ (K) [cm]	$ d_0(\pi) $ [cm]	$ d_0 \times d_0 \; [cm^2]$	$\cos \theta_{point}$
0.02	0.8	0.7	0.7	0.05	0.05	-0.00015	0.9

D^0 invariant mass fit (II)

 $p_T > 5 \text{GeV}$

C.Bianchin, Università and INFN - Padova

Table of results

- Colours legend: Fit, MC
- ullet Signal, background and significance in ${f 1}\sigma$

bin	S	В	S/B	signif
$1 < p_t < 3 { m GeV}$	120±20 (76)	296±6 (373)	0.2	6±1
$3 < p_t < 5 { m GeV}$	83±10 (73)	48±3 (61)	1.2	7 ± 1
$p_t > 5 { m GeV}$	21±5 (23)	8±1 (6)	4	4±1

- The comparison with MC highlight a discrepancy that needs further studies
- The error on the fit of the background is very small. This may cause a wrong estimation of the error in a little range as 1σ
- More statistics can help to understand if the comparison improves "spontaneously"

LHC09a5

- *lhc09a5*: p-p @ 10 TeV with a $c\overline{c}$ pair per event with 1/3 of D⁰ forced to decay in K π
- 4M events analysed

• The shape of the background is due to the *reflected signal* (K and π momentum exchanged)

bin	S	В	S/B	signif
2	365±20 (377)	92±5 (94)	4	17 ± 1
3	288±11 (294)	25±3 (25)	6	16 ± 1
4	117±11 (122)	25±3 (25)	5	10 ± 1

Study of the feed-down from B

- * From Andrea Rossi
- The contribution to the D⁰ signal from B decays is not negligible and has to be separated

Study of the feed-down from B

- * From Andrea Rossi
- The contribution to the D⁰ signal from B decays is not negligible and has to be separated

• CDF experiment developed a method to extract signal coming from *B* using the impact parameter *d*₀ which has different features in the two cases

CDF method (I)

- * C.Chen, Ph.D. thesis, University of Pennsylvania, 2003,FERMILAB-THESIS-2003-14
- The impact parameter (IP) probability distribution can be described by:

$$F(d_0) = (1 - f_D) \int F_{B \leftarrow D}(x) F_{res}(d_0 - x) dx + f_D F_{res}(d_0)$$

where: f_D is the fraction of primary D^0 $F_{B\leftarrow D}(x)$ is the IP probability distribution of D^0 coming from B $F_{res}(d_0 - x)$ is the probability distribution due to the resolution of the detector

SECONDARY D^0 : true d_0 in

general > 0

CDF method (I)

- * C.Chen, Ph.D. thesis, University of Pennsylvania, 2003,FERMILAB-THESIS-2003-14
- The impact parameter (IP) probability distribution can be described by:

 $F(d_0) = (1 - f_D) \int F_{B \leftarrow D}(x) F_{res}(d_0 - x) dx + f_D F_{res}(d_0)$

where: f_D is the fraction of primary D^0 $F_{B\leftarrow D}(x)$ is the IP probability distribution of D^0 coming from B $F_{res}(d_0 - x)$ is the probability distribution due to the resolution of the detector

- $F_{B\leftarrow D}$ is proportional to an exponential function with a parameter λ
- F_{res} is a Gaussian function with a width σ

Background subtraction

• To take into account the **background** an extra factor is added to the IP distribution that can be now written as:

 $F(d_0) = \frac{S}{T} \left[(1 - f_D) \int F_{B \leftarrow D}(x) F_{res}(d_0 - x) dx + f_D F_{res}(d_0) \right] + \frac{B}{T} \left[F_{bkg}(d_0) \right]$

- The fraction of S and B can be determined from the invariant mass fit
- Once supposed a shape for F_{bkg} a fit on the IP distribution of particles in the side-bands of the invariant mass distribution (where there is no signal) fixes the parameters
- At this point is possible to subtract it to the total obtaining the signal (primary + secondary)

Background subtraction

• To take into account the **background** an extra factor is added to the IP distribution that can be now written as:

$$F(d_0) = rac{S}{T} \left[(1 - f_D) \int F_{B \leftarrow D}(x) F_{res}(d_0 - x) dx + f_D F_{res}(d_0)
ight] + rac{B}{T} \left[F_{bkg}(d_0)
ight]$$

- The fraction of S and B can be determined from the invariant mass fit
- Once supposed a shape for F_{bkg} a fit on the IP distribution of particles in the side-bands of the invariant mass distribution (where there is no signal) fixes the parameters
- At this point is possible to subtract it to the total obtaining the signal (primary + secondary)

CAVEAT!

• Must verify that the background under the signal has the same IP distribution as the one found from the side-bands

Background subtraction

• To take into account the **background** an extra factor is added to the IP distribution that can be now written as:

$$F(d_0) = rac{S}{T} \left[(1 - f_D) \int F_{B \leftarrow D}(x) F_{res}(d_0 - x) dx + f_D F_{res}(d_0)
ight] + rac{B}{T} \left[F_{bkg}(d_0)
ight]$$

- The fraction of S and B can be determined from the invariant mass fit
- Once supposed a shape for F_{bkg} a fit on the IP distribution of particles in the side-bands of the invariant mass distribution (where there is no signal) fixes the parameters
- At this point is possible to subtract it to the total obtaining the signal (primary + secondary)

CAVEAT!

• Must verify that the background under the signal has the same IP distribution as the one found from the side-bands *Andrea verified*!

Background subtraction (II)

Secondary and sum of primary and secondary D^0

- *Top plot:* MC IP distribution of secondary *D*⁰
- Bottom plot: contribution from prompt charm weighted with a f_D plus contribution from secondary charm weighted with $(1 - f_D)$
- Attempt to recover the input values:

	Input	Recovered
σ	85 µm	92 μ m
f_D	0.85	0.87

Secondary and sum of primary and secondary D^0

- *Top plot:* MC IP distribution of secondary *D*⁰
- Bottom plot: contribution from prompt charm weighted with a f_D plus contribution from secondary charm weighted with $(1 - f_D)$
- Attempt to recover the input values:

	Input	Recovered
σ	85 µm	92 μ m
f_D	0.85	0.87

Work in progress . . .

 $D^0 \rightarrow K\pi$ analysis in p-p

=

Conclusions

- ALICE is well equipped to separate charm and beauty contribution thanks to the vertex detector
- Charm will be study through an invariant mass analysis of charmed mesons like D^0

Conclusions

- ALICE is well equipped to separate charm and beauty contribution thanks to the vertex detector
- Charm will be study through an invariant mass analysis of charmed mesons like D^0

- The results presented show that the tools that have been developed so far allow to extract the signal yield
- The beauty contribution can be disentangled from charm yield thanks to an impact-parameter-based analysis