

> 1/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results

Conclusion

Particle Identification in the Inner Tracking System of ALICE

Emanuele Biolcati for the ALICE Collaboration

Università e INFN di Torino

V Convegno Nazionale sulla Fisica di ALICE Trieste - September, 14 2009

> 2/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesiar approach PID results

Conclusion

1 Introduction ■ PID in ITS

2 SDD calibration

SDD effect correction

3 PID2 algorithm

- The Bayesian approach
- PID results

ITS role in ALICE

3/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesiar approach PID results

- Reconstruction of primary vertex with resolution below 100 μ m
- Prolong TPC tracks to the primary vertex. ITS crucial for pt and impact parameter resolution
- Track and identify particles missed by the TPC (pt cutoff, decays, acceptance)
- \blacksquare Detection of secondary vertices from hyperons, \mathcal{K}^0_s and heavy flavor decays

Features of ITS as standalone tracker

(thanks to Francesco Prino and Andrea Dainese)

The PID in the ITS

Simulation of *p*-*p* events

Possible to distinguish p, K and π only

PID in ITS will be important for all tracks missed by TPC ($\approx 10\%$)

PID in ITS is crucial when ITS is used as a standalone tracker

PID algorithm in ITS

Particle Identification in the Inner Tracking System of ALICE

> 6/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibratio

PID2 algorithm

The Bayesiar approach PID results

Conclusion

AliITSpidESD1.h

- dE/dx obtained as truncated mean of the cluster charge read by the 4 ITS outer layers (tails cut \rightarrow distributions fitted by a Gaussian)
- conditional probabilities calculated from a sigma cut of dE/dx value obtained with the Bethe-Bloch formula for a given particle with a given momentum

AliITSpidESD2.h

- based¹ on the convoluted Landau-Gaussian fits to the dE/dx
- signal from each SDD and SSD layer individually treated

¹E.Bruna, *Response functions for Particle Identification in the Inner Tracking System*, ALICE Internal Note (October 2006)

> 7/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesia approach PID results

Conclusion

1 Introduction ■ PID in ITS

2 SDD calibrationSDD effect correction

3 PID2 algorithm

The Bayesian approach

PID results

SDD: drift time dependence

(details in the Davide Falchieri's talk)

- Electron cloud, generated in the Si, spreads during the drift
- Signal tails could be cut by the zero-suppression algorithm
- For each SDD layer, charge distributions plotted in drift time bins and fitted by Landau+Gaussian convolution
- Fit parameter plotted versus drift time (next slide)

SDD: drift time dependence, results for layer 3

Particle Identification in the Inner Tracking System of ALICE

> 9/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results

Conclusion

p-p events simulation

Dependence on drift time (data are zero-suppressed)

No dependence on drift time for non zero-suppressed data

SDD: correction for zero suppression

Particle Identification in the Inner Tracking System of ALICE

> 10/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results

Conclusion

Correction in the code:

AliITSClusterFinderV2SDD.cxx

q/=rsdd->GetADC2keV();

q+=(driftTime*rsdd->GetChargevsTime());

> 11/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm The Bayesian approach

Conclusion

1 Introduction ■ PID in ITS

2 SDD calibrationSDD effect correction

3 PID2 algorithm

- The Bayesian approach
- PID results

PID2 status

Particle Identification in the Inner Tracking System of ALICE

> 12/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm The Bayesian approach PID results

Conclusion

Done:

- *Pb Pb* events (by Elena Bruna) but...
 - response functions R(S) obtained with old ADC charge scale and old detector description
 - possible differences with respect to p-p events
- correction for detector systematics (i.e. SDD drift time)

On going:

- R(S) with new keV charge scale
- *p*-*p* events

To do:

- cosmics: comparison between simulation and reconstruction to validate the R(S)
- *Pb* − *Pb* events

PID2 algorithm I

Particle Identification in the Inner Tracking System of ALICE

> 13/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results

Conclusion

Evaluation of the response functions:

- Event generation (PYTHIA or HIJING)
- Tracking in ITS (tracks with 4 clusters in SDD and SSD)
- For each reconstructed track, all the 4 charge signals coming from the 4 different layers (SDD+SSD) retrieved
- dE/dx histograms in momentum slices 0.032 GeV/c wide
- For each momentum bin, dE/dx distribution for p, K, π (*i.e.* R(S)) fitted by Landau-Gaussian convolution
- Four fit parameters:
 - Width Landau (WL)
 - Most Probable Value (MP)
 - Total Area (neglected)
 - Width Gaussian (WG)
- R(S) normalized to its total area

PID2 algorithm II

Particle Identification in the Inner Tracking System of ALICE

> 14/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibratio

PID2 algorithm

The Bayesian approach PID results

Conclusion

■ Fit parameters plotted versus momentum bins and fitted by *ad hoc* functions: *f*_{WL}, *f*_{MP}, *f*_{WG}:

 Pions
 Kaons, Protons

 $\begin{cases} f_{WL} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2 \\ f_{MP} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2 \\ f_{WG} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2 \end{cases}$ $\begin{cases} f_{WL} = A + \frac{B}{p^2} \\ f_{MP} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2 \\ f_{WG} = A + \frac{B}{p^2} + \frac{C}{p^2} \log p^2 \end{cases}$

Bayesian approach: probability for a track of momentum p, with measured dE/dx, to be of type i:

$$P(i|S) = \frac{R(S|i)P(i)}{\sum_{t=P,K,\pi} R(S|t)P(t)}$$

where S = dE/dx, P(i) are the priors

- Recursive method:
 - first step: $P(i) = \frac{1}{3}$ for π, K, p
 - next steps: $P'(i) = \frac{N_i}{N_{tot}}$, where N_i particles with P(i|S) > threshold

Binning in momentum

Particle Identification in the Inner Tracking System of ALICE

> 15/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results Example

particle π

P ∈ [320 MeV,352 MeV]

estimation of resolution

 $\sqrt{WL^2 + WG^2} \simeq 10 \text{keV}$

layer 4

- For each particle specie, for each layer (SDD and SSD), binning in momentum is performed
- 50 bins 32 MeV/c wide, from 0 to 1.6 GeV
- Fit parameters are stored to be plotted versus momentum

Fit parameters: p-p events, layer 3 SDD, pions

Fit parameters: p-p events, layer 4 SDD, protons

17/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results

PID results

Fit parameters: p-p events, layer 5 SSD, kaons

18/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results

PID results

Contamination and efficiency: definition

Particle Identification in the Inner Tracking System of ALICE

> 19/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results

Conclusion

■ Test and improve of pidESD2:

- check the R(S) calculated by the recursive method
- fine tuning of the *ad hoc* fit functions

■ Using contamination/efficiency:

 $efficiency = \frac{N_{good}}{N_{true}}$

contamination =
$$\frac{N_{fake}}{N_{identified}}$$

• Using fractions (for example for π : $\begin{cases}
N(\pi|\pi) = \frac{true \pi \ identified \ as \pi}{true \pi} \\
N(\pi|K) = \frac{true \pi \ identified \ as K}{true \pi} \\
N(\pi|p) = \frac{true \pi \ identified \ as p}{true \pi}
\end{cases}$

Contamination and efficiency: kaons

20/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibrations SDD effect

PID2 algorithm The Bayesian

PID results

Conclusion

kaons 300 k entries *p-p* events ITS standalone

Contamination and efficiency: pions

> 22/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesia approach PID results

Conclusion

1 Introduction ■ PID in ITS

2 SDD calibrationSDD effect correction

3 PID2 algorithm

The Bayesian approach

PID results

Particle

Identification in the Inner Tracking System

of ALICE

Emanuele Biolcati

Conclusion

Conclusions

Landau+Gaussian PID in ITS

Work in progress to tune the response functions taking into account:

- new keV charge scale
- correction for detector systematics (i.e. SDD drift time)
- *p*-*p* events (simulation)

Results and future...

- Contamination and efficiency values good for low momentum particles
- To do: cross check using cosmic data
- Algorithm will be ready for first *p*-*p* collisions (data)
- It will be possible to perform dN/dp_t and dN/dy distributions using ITS in standalone mode \rightarrow particles at lower p_t reach with respect to TPC based analysis

> 24/27 Emanuele Biolcati

Introduction PID in ITS

SDD calibration

SDD effect correction

PID2 algorithm

The Bayesian approach PID results

Conclusion

That's all, thanks.

> 25/27 Emanuele Biolcati

Part I

Backup slides

Zero-suppression effect simulation (I)

Particle Identification in the Inner Tracking System of ALICE

> 26/27 Emanuele Biolcati

Zero-suppression effect simulation (II)

Particle Identification in the Inner Tracking System of ALICE

> 27/27 Emanuele Biolcati

