Le prime misure di QCD con l'esperimento ATLAS

Chiara Roda

INFN & Universita` di Pisa

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

II programma di fisica ad ATLAS

- I punti di ricerca fondamentali si concentrano su:
- ricerca dell Higgs;
- verifica/esclusione delle SUSY;
- tutto cio' che e` (~) inaspettato: compositness, extra dimensioni, nuovi fenomeni...
- Sezioni d'urto < pb

Primo passo e` una lunga strada di misure note:

- minimum bias, Jet cross section, W, Z, top's ...
- sezioni d'urto > nb

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

C.Roda - Unive

ATLAS

Doppio campo magnetico: solenoidale inner detector, toroidale spettrometro muoni. Ottima misura pt muoni standalone, calorimetri non immersi in campo magnetico.

ATLAS

1996 V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

2004

THE

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009 C.Roda - University and INF Pisa

Ē

Minimum bias e pileup

Pileup: $<n> = \sigma_{INEL} \times L \times \Delta t$ $= 70 \text{ mb } \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \times 25 \text{ ns}$ $\cong 20 \text{ interazioni/BunchCrossing}$ Grosso cambiamento rispetto alle macchine precedenti: LEP: $\Delta t = 22 \text{ } \mu \text{s}$ <n> <<1 $\text{ SppS: } \Delta t = 3.3 \text{ } \mu \text{s}$ $<n> \approx 3$

HERA: $\Delta t = 96$ ns Tevatron : $\Delta t = 3.5 \ \mu s$ Tev RunII: $\Delta t = 0.4 \ \mu s$ <n> << 1<n> << 1<n> << 2

Cosa si sa sugli eventi di Minimum Bias (MB)?

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

Cosa si sa e cosa non si sa su MB

Le simulazioni dei processi soffici sono state messe a punto con dati di ISR, SppS, Tevatron ma le estrapolazioni ad alte energie hanno grosse incertezze.

Definizione eventi di Minimum Bias

Cosa sono gli eventi di MB dipende in effetti dal trigger dell'esperimento. Storicamente si assimilavano gli eventi di MB a Non Single Diffractive (NSD) eventi -> Tot – EL – SD.

Selezione degli eventi MB: trigger

- Luminosita` 10³³-10³⁴ cm⁻²sec⁻¹: random Triggers in coincidenza con bunch-crossing
 - Zero bias
 - Non utilizzabile all'inizio perche` Nevent/BC<<1
- Trigger con le tracce |η|<2.5
- Trigger con MB scintillators
 2.1<|η|<3.8
- LUCID 5.6<|η|<5.9

Ogni trigger selezione una mistura diversa di eventi SD/DD/ND:

 $\sigma_{\text{meas}} = \varepsilon_{\text{SD}} \sigma_{\text{SD}} + \varepsilon_{\text{DD}} \sigma_{\text{DD}} + \varepsilon_{\text{ND}} \sigma_{\text{ND}}$

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009 ε=efficienza di trigger

Efficenza di trigger

Efficienza calcolata con Pythia @ 14 TeV

Efficiency	MBTS_1_1	MBTS_2	SP+EF
ND	0.99	1.0	1.0
SD	0.45	0.69	0.57
DD	0.54	0.83	0.65

MBTS_1_1 = MB scintillator one hit per side MBTS_2 = 2 MB scintillator hits any side SP+EF = Inner det Hits e traccie

Efficienza su SD e DD e` circa 50% - 80% dell'efficienza su ND

Tenendo conto dell'efficienza di trigger: il 10% degli eventi selezionati sono SD o DD. Poter risalire alla corretta mistura di SD/DD/ND permette di poter confrontare dati da esperimenti diversi.

Analisi eventi MB

Uno degli aspetti fondamentali per aumentare la sensibilita' della misura delle caratteristiche degli eventi di MB e` la capacita` di misurare traccie di p_T molto basso.

Soglia Standard Reco: $p_T > 500$ MeV (up to end of TRT)

Soglia MB Reco: p_T >150 MeV (up to last SCT layer)

Bassa efficienza -> estrap x 2 -> richiede ottima comprensione low pt tracking

p_ (GeV)

Risultati – MBTS 2 hit dovunque

Correzione per: efficienza ricostruzione tracce e vertici per risalire alle distribuzioni di particelle cariche dopo la frammentazione. Questa distribuzione puo`essere direttamente confrontata con altri esperimenti misure precedenti UA5, CDF

Risultati

Total Systematic uncertainty: 8% Dominata da 6% dovuto al misallineamento atteso per l'inizio del run.

Misura dell'Underlying Event (UE)

Gli eventi di jet sono un ottimo campione per misurare l'UE.

Osservabili:

Molteplicita' media nella regione trasversa vs pt leading jet

> p_⊤ medio nella regione trasversa vs pt leading jet

Tracks: p_τ>0.5 GeV |η|<1 Jet algo: cone 0.7

Precisione nella misura ad ATLAS

```
Stima della precisione della
misura ottenibile con ATLAS:
Jets (cone0.7):
N^{jet}>1
p^{jet}_{T} > 10 \text{ GeV}
|\eta^{jet}|<2.5
Traccie:
|\eta^{trk}|<2.5
p^{trk}_{T} > 1 \text{ GeV/c}
```

Il range di misura anche solo con i primi dati di LHC si estende molto.

Per questo studio sono stati usati 60pb⁻¹ (qualche giorno di presa dati a 10³²cm^{-2sec}-1 con eff = 50%) V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

Nuovo tuning di Pythia

Buon accordo tra le predizioni di Pythia6.416 tuned e Jimmy4.3 per i dati le energie di Tevatron. @LHC: <Nch> in accordo; Spettro piu' duro per Pythia.

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

Jets in physics analysis...

L'enorme sezione d'urto di QCD produrra` una valanga di jet ...

D.Clements

DIS07

Le misure da fare con i primi dati

• Inclusive:

- Jet cross section vs p_T
- Rapporto delle sezioni d'urto in regioni di eta
- Jet shapes
- Dijet events
 - Delta Phi
 - Spettro Mjj
 - CosTheta*

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

$\Delta \phi$ (Jet Jet) - Decorrelation

$\Delta \phi$ dei 2 jet a piu' alto p_T

Δφ e` molto sensibile agli effetti di radiazione di QCD -> tuning di Pythia. Risultati di D0 ben descritti da NLO pQCD e HERWIG, ALPGEN, SHERPA

Prima pubblicazione di QCD del RUNII di D0: PRL94221801. Jet scale uncertainty (7%) maggiore contributo a errore sistematico.

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

Studio della decorrelazione a ATLAS

Prevision @ LHC

Studio dell'analisi in ATLAS: Jet algo: Midpoint R=0.7(0.4) Second leading jet p_T >80GeV Jets in $|\eta|$ <0.5

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

H1: calibrazione al Particle Jet

I jet ricostruiti dai depositi calorimetrici alla scala EM differiscono per circa il 20-30% dall'energia del particle-jet con grosse non linearita` dovute (principalmente) a energia persa nel Dead Material + non-compensazione dei calorimetri.

L'idea` e` utilizzare la densita` dei depositi di energia per discriminare i depositi elettromagnetici da quelli adronici

$$E_{EM} = \mathop{a}_{j\hat{1}} E_{cell_{j}}$$

$$r cell_{j} = Ecell_{j} / Vcell$$

$$E_{H1} = \mathop{a}_{j} W(r cell_{j}, CellPosition) Ecell_{j}$$

w(pcell,CellPosition) coefficients obtained by minimizing the energy resolution with respect to particle jets on QCD di-jet events.

Solo jet lontani dai crack vengono utilizzati per ottenere i pesi. Un ulteriore peso viene utilizzato per migliorare l'equalizzazione e la linearita`. $E = O(r_{1} - h)E$

 $E_{CAL} = Q(p_{T-H1}, h)E_{H1}$ C.Roda - University and INFN Pisa

From the uncalibrated jet to the calibrated jet

900 E

800 E

Etrue=57 (GeV), J_eta:0.0-0.7

Etrue=31 (GeV), J_eta:0.0-0.7

700

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

1.8

Etrue=92 (GeV), J_eta:0.0-0.7

1 1.2 1.4 1.6 1.8

1

1

E_reco/E_true

1.2 1.4 1.6 1.8

1.2 1.4 1.6

E_reco/E_true

E_reco/E_true

800 E

Linearity and resolution

27

Cosa sappiamo della sistematica di H1

Funzionamento del metodo

- massima non linearita` sul campione da cui si ottiene (QCD) la calibrazione e` del <4% a $p_T = 20 GeV$
- il metodo funziona bene per qualsiasi tipo di jet

Dipendenza dal campione

•Se applico la calibrazione ad un campione diverso (diverso generatore, tipi di jet ...) da quello per cui la ho ottenuta: SUSY, top, gamma-jet ... si ha una massima non linearita` del 5%

Dipendenza dalla descrizione della geometria del rivelatore

Calibro un rivelatore perfetto e applico la calibrazione ad un rivelatore con maggiore Dead Material nella regione del Gap(η ≈ 1.5) → Effetto dell'ordine del 5%
 V convegno nazionale sulla Fisica C.Roda - University and IN di ALICE - Trieste, 14.9.2009

SUSY Sample

H1 su dati veri ...

Test con pioni singoli al TB

- Ottengo la calibrazioni con pioni (e protoni) MC in configurazioni CTB
- Applico la calibrazioni ai pioni del TB e verifico le performance confrontando con l'energia del fascio
- Discrepanza tra dati e MC alla scala EM 2%
- Discrepanza tra dati e MC alla scala HAD 4%

Controllo scala dei jet con i dati

Campioni di contro	ollo 10pb ⁻¹					
· · · ·						
noise	large					
minimum-bias	large					
di-jets	large					
γ-jet	$4200 \text{ k}/10 \text{ pb}^{-1}$					
W-production (e/μ)	30 k /10 pb ⁻¹					
Z-production (e/μ)	3 k /10 pb ⁻¹					
$Z \rightarrow \pi^+ \pi^-$	$2/10 \text{ pb}^{-1}$					
$t\bar{t}$	$300 / 10 \text{ pb}^{-1}$					

Le prime (alcuni esempi):

- uniformita` con i muoni: dE/dx
- E/p per traccie isolate
- dijet balance vs pt/eta
- multijet balance vs pt
- W->jj
- gamma/jet balance

Multijet balance

Con gli eventi di gamma-jet si copre un range limitato di p_T Gli event di multi-jet permettono di estendere il controllo dellla scala dei jet.

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

Studi su quarkonia: J/ ψ e Υ

Un campione di J/ ψ -> $\mu\mu$ e Υ -> $\mu\mu$ prompt verra` sfruttato per:

- capire il meccanismo di produzione dei quarkonia
 - misure della sezione d'urto differenziale di produzione di J/ ψ -> $\mu\mu$ e Υ -> $\mu\mu$ prompt
 - misura della polarizzazione di $\ J/\psi$ e Υ in funzione del $p_{_T}$
- capire il fondo che i quarkonia costituiscono per misure di scoperta
- per misure di monitoring dell'allineamento e calibrazione

Tutti gli studi sono stati fatti per 14 TeV per cui ci si aspetta 10k quarkonia su nastro per ogni picobarn inverso

Estrazione del segnale: trigger e analisi

	Non inc	Non include trigger & reco efficiency				
Irigger su μ:	Quarkonium	Cross-section, nb				
$\mu 4\mu 6 = p_T > 4 \text{ GeV} + p_T > 6 \text{ GeV}$	$ Quarkonium \mu 4 \mu$		μ6μ4	μ10	$\mu 6 \mu 4 \cap \mu 10$	
u10 = n > 10 GeV	J/ψ	28	23	23	5	
$\mu T = \mu_T + T = 0 $	ψ'	1.0	0.8	0.8	0.2	
	Υ(1S)	48	5.2	2.8	0.8	
	$\Upsilon(2S)$	16	1.7	0.9	0.3	
	Υ(3S)	9.0	1.0	0.6	0.2	

Fondi maggiori:

- produzione indiretta di J/ ψ da bbbar
- muoni da quark b, charm

Utilizzo del tempo proprio = 0 tipico della produzione diretta

Segnale – trigger dimuoni

Misura della polarizzazione

I modelli di produzione di quarkonia predicono diverse sezioni d'urto e di polarizzazione. Le due misure offrono quindi la possibilita` di discriminare fra vari modelli.

Misura della polarizzazione e trigger

L'accettanza del trigger modifica fortemente la distribuzione di $\cos\theta^*$.

Maggiore e' l'accettanza in $\cos\theta^*$ migliore sara la sensibilita` alla misura della polarizzazione.

Accettanza trigger J/ψ

La distribuzione angolare generate e` piatta. I due trigger selezionano configurazioni in p_T diverse.

Nel caso di single-muon trigger il secondo muono e' ricostruito offline con traccie p_T >0.5GeV

Utilizzo dei due trigger

Accettanze (trig+reco) per $\mu 4\mu 6$ e $\mu 10$ ottenute da considerazioni geometriche e studi data-driven. Le regioni di overlap ad alto p_T permettono cross-check.

Distribuzioni misurate di $\cos\theta^*$ (10pb⁻¹).

Misura della polarizzazione

Distribuzioni corrette per accettanza e efficienza in p_{T} bins

Gli errori includono errori statistici e varie sistematiche come incertezza sulla misura delle accettanze di trigger e efficienze di ricostruzione.

Risultato ottenuto per 10pb⁻¹. Con 10 pb⁻¹ gli errori nei bin in pT sulla sezione d'urto sono dell'ordine del 1%.

Conclusioni

Atlas e` pronto per le misure che permetteranno la caratterizzazione di MB & UE e per le prime misure di QCD.

Molte di queste misure sono molto interessanti anche ad energie piu' basse 900 GeV e 7 TeV e con basse luminosita` ... aspettiamo LHC !

Grazie per l'invito!

Back-up

Sezione d'urto e polarizzazione

Sample	p_T , GeV	9-12	12 - 13	13 - 15	15 - 17	17 - 21	> 21	
	α	0.156	-0.006	0.004	-0.003	-0.039	0.019	J/ψ polarisation
$I/m \alpha = 0$		± 0.166	± 0.032	± 0.029	± 0.037	± 0.038	± 0.057	—
J/ψ , $\alpha_{\rm gen} = 0$	σ , nb	87.45	9.85	11.02	5.29	4.15	2.52	J/ψ cross-section
		± 4.35	± 0.09	± 0.09	± 0.05	± 0.04	± 0.04	< <u>←</u>
	α	1.268	0.998	1.008	0.9964	0.9320	1.0217	Г
$L/m \alpha = \pm 1$		± 0.290	± 0.049	± 0.044	± 0.054	± 0.056	± 0.088	
$J/\psi, \alpha_{\text{gen}} = +1$	σ , nb	117.96	13.14	14.71	7.06	5.52	3.36	Results at
		± 6.51	±0.12	± 0.12	± 0.07	± 0.05	± 0.05	extrema of
	α	-0.978	-1.003	-1.000	-1.001	-1.007	-0.996	polarisation
L/m $\alpha = -1$		± 0.027	± 0.010	± 0.010	± 0.013	± 0.014	± 0.018	states
J/ψ , $\alpha_{gen} = -1$	σ , nb	56.74	6.58	7.34	3.53	2.78	1.68	
		± 2.58	± 0.06	± 0.06	± 0.04	± 0.03	± 0.02	
	α	-0.42	-0.38	-0.20	0.08	-0.15	0.47	Y polarisation
$r \alpha = 0$		± 0.17	± 0.22	± 0.20	±0.22	± 0.18	± 0.22	
Γ , $\alpha_{gen} = 0$	σ , nb	2.523	0.444	0.584	0.330	0.329	0.284	Y cross-section
		± 0.127	± 0.027	± 0.029	± 0.016	± 0.015	± 0.012	←

Parametri Pythia

Introduction:

EPJ C 50, 435 (2007) V convegno nazionale sulla Fisica

di ALICE - Trieste, 14.9.2009

Minimum bias and underlying event measurements were used for a "new" round of MC tunings.

Comments	ATLAS - TDR (PYTHIA5.7)	Pythia6.214 - Atlas
Generated processes (QCD + low-pT)	Non-diffractive inelastic (MSEL=1)	Non-diffractive + double diffraction (MSEL=0, ISUB 94 and 95)
p.d.f.	CTEQ 2L (MSTP(51)=9)	CTEQ 5L (MSTP(51)=7)
Multiple interactions models	MSTP(81) = 1 MSTP(82) = 4	MSTP(81) = 1 MSTP(82) = 4
pr min	PARP(82) = 1.55 no energy depend.	PARP(82) = 1.8 PARP(89) = 1 TeV PARP(90) = 0.16
Core radius	20% of the hadron radius (PARP(84) = 0.2)	50% of the hadron radius (PARP(84) = 0.5)
Gluon production mechanism	PARP(85) = 0.33 PARP(86) = 0.66	PARP(85) = 0.33 PARP(86) = 0.66
α_s and K-factors	MSTP(2) = 2 MSTP(33) = 3	MSTP(2) = 1 MSTP(33) = 0
Regulating initial state radiation	PARP(67) = 4	PARP(67) = 1

Prametri Pythia retuned

Parameters tuned:

University of Glasgow

UE @ 10 TeV

Particle Density plateau at $\sqrt{s}=10$ TeV reduced by 16% wrt $\sqrt{s}=14$ TeV 1-10pb⁻¹ with minimum bias trigger probes to Pt-leading jet ~50GeV

Inner Detector

<u>3 Sottosistemi :</u>

nu	s/track
Pixels	3
Silicon Tracker (SCT)	4
Transition Radiation Tracker (TRT)	36

Particle ID : **TRT** $e/\pi \sim 100$

II Sistema Calorimetrico

Il Calorimetro Elettromagnetico

Calorimetro a campionamento LAr/piombo struttura accordion – no cracks in φ LAr per radiation resistance/uniformita` 3 sezioni longitudinali presampler per materiale inerte di fronte

la prima sezione molto segmentata per riconoscimento γ/π^0 e/ π , misura posizione shower

• Risoluzione: Termine campionamento < 10%/ \sqrt{E} (for SM H), termine costante <1% (H $\rightarrow \gamma\gamma$)

- Profondita` > 24 X₀ depth (limitare effetto leakage)
- Ermeticita`
- Linearita` 0.5% da 1 to 300 GeV (H ightarrow $\gamma\gamma$, H ightarrow 4e)
- precisione scala energia em 0.02% (M_w)

Sezione adronica del calorimetro

- Scala assoluta di Energia 1% (misure di precisione Mtop, Mw)
- Granularita`: $\Delta \eta \propto \Delta \phi = 0.1 \times 0.1$ adattata alla dimensione dello shower adronico

di ALICE - ITTESTE, 17.7.2007

V co

Spettrometro per muoni

End cap: 1 < |η | < 2.7 Tracciatura: MDTs & CSCs Triggering: TGCs

> **Barrel**: |η | < 1.0 Tracciatura: MDTs

Triagering: RPCs

Cathode strip_ chambers Si utilizzano diverse tecniche per ottimizzare su range di η:

✓ resistenza alla radiazioni

✓ tracciatura (risoluzione spaziale – decine di micron)

✓ trigger performance (fast time

Ruolo fondamentale: Trigger, misura impulso (standalone) ed identificazione dei muoni:

2 m

che ns)

ored Drift Tubes

tive Plate Chambers

catodica \Rightarrow piccolo tempo di drift

CSC: Cathode Strip Chambers

di ALICE - Trieste, 14.9.2009

Radiation shield

Spettrometro per muoni - risoluzione

12 Contribution to resolution (%) 11

V convegno nazionale sulla Fisica C.Roda - University and INFN Pisa di ALICE - Trieste, 14.9.2009

Una piccola rivoluzione in ATLAS ... quali jet utilizzare ?

- Chiunque di voi abbia avuto a che fare con jet ha probabilmente combattuto con la decisione di quale algoritmo di jet utilizzare ?
- L'algoritmo di jet e` un modo per semplificare la visione dell'evento cercando di liberarsi del processo di frammentazione per risalire alla dinamica dei partoni
- Non c'e` un modo unico per implementare questa "proiezione" ma l'esperienza ci ha fatto capire quali sono le proprieta` sperimentali e teoriche che vorremmo che l'algoritmo avesse
- I jet sono nati con un algoritmo a cono che ha via via mostrato i suoi limiti. Gia` D0 e CDF hanno cercato di cambiare algoritmo di jet ma con grossa difficolta` e poco successo…

Dei "buoni" jet per questi studi

... dal punto di vista teorico:

• Devono essere "*collinear and infrared safe*" cioe` la ricostruzione dell'evento non deve cambiare se aggiungo un partone a basso p_T o se un partone viene splittato in due partoni

• PERCHE`?

 Perche` voglio poter confrontare le misure con le predizioni teoriche e l'applicabilita` ai calcoli di pQCD e` possibile solo se l'algoritmo e` collinear and infrared safe

Among consequ	8 tures on Jets			
	Last meaningful order			
	JetClu, ATLAS	MidPoint	CMS it. cone	Known at
	CONE [IC-SM]	[IC _{mp} -SM]	[IC-PR]	
Inclusive jets	LO	NLO	NLO	NLO (\rightarrow NNLO)
W/Z+1 jet	LO	NLO	NLO	NLO
3 jets	none	LO	LO	NLO [nlojet++]
W/Z + 2 jets	none	LO	LO	NLO [MCFM]
$m_{\rm jet}$ in $2j + X$	none	none	none	LO

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

Dei "buoni" jet per questi studi

... dal punto di vista sperimentale:

• Veloce: gli eventi ad LHC avranno alta molteplicita` con hard jets sovrapposti a underlying event e pile-up … l'algoritmo di jet deve essere anche su eventi complessi

• **Insensibile a processi soffici**, quindi guidato dalla parte hard dell'evento

 Stessa visione dell'evento se applicato alla lista delle particelle mc o ai depositi calorimetrici: insensibilita` all'input -> alta efficienza e purezza e facilita` nella calibrazione

• Flessibilita`

- Jet "grossi" per segnali esotici
- Jet "piccoli" per top
- Possibilita` di cercare la sottostruttura dei jet es.: highly boosted W,Z,H->1jet(bb)

Dei "buoni" jet dai nuovi algoritmi

Da molti anni si cerca di andare verso un algoritmo di jet definito in un modo migliore che abbia buone proprieta` sia dal punto di vista teorico che da punto di vista pratico/sperimentale. Due tipi di algoritmi sono stati proposti negli ultimi anni che ben soddisfano queste richieste: SISCONE & AntiKT

Grosso lavoro per confrontare le performance di questi algoritimi con quelli piu` standard (cone, KT). AntiKT e` l'algoritmo che e` risultato avere migliori performance da tutti i punti di vista:

- Soddisfacente dal punto di vista teorico;
- Dal punto di vista tecnico (utilizzo di memoria,velocita`);
- Efficenza e purezza: migliore efficenza a basso p_T (controllato su QCD inclusiva ed esclusiza, top, light and b-quark...), minore sensibilita` al tipo di input (truth o segnali calorimetrici);
- Migliore match ai jet trigger;
- Nessuna problema con le calibrazioni

For each couple of components i,j

Plot di controllo

DiJet Mass

Stato del rivelatore @ LHC start

	Initial	Ultimate	Samples
e/γ E scale	~2%	0.1%	$Z \rightarrow ee, J/\psi, \pi^0$
e/γ uniformity	1-4%	0.5%	Z→ee
jet E scale	5-10%	~1-2%	W→jj in tt, γ /Z+jets
tracking alignment	10-100 μm	<10 μm	tracks, Z→µµ
muon alignment	few 100 µm	30 µm	inclusive μ , Z \rightarrow $\mu\mu$

Differenze nelle predizioni

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

From the uncalibrated jet to the calibrated jet

Sistematica MB

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009

Quarkonia soglie di trigger

V convegno nazionale sulla Fisica di ALICE - Trieste, 14.9.2009