

Prospettive per misure di QCD con i primi dati di CMS

Roberto Covarelli (CERN)

per la collaborazione CMS

V Convegno Nazionale sulla Fisica di ALICE Trieste, 12-14 Settembre 2009

Outline and references

- The talk will be mainly based on 2007-2009 Physics Analysis Summaries available on the CMS server (https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults):
 - Charged hadron spectra with pixel "tracklets" (PAS-QCD-09-002)
 - Charged hadron spectra with full tracking (PAS-QCD-07-001)
 - Study of underlying event (PAS-QCD-07-003)
 - Measurement of prompt and non-prompt J/ $\psi \rightarrow \mu\mu$ cross-section (PAS-BPH-07-002)

plus some news on recent additions and developments of the analyses

- CMS: a detector optimized for high-p_T physics (Higgs, top, SUSY, high-mass vector bosons... etc.)
- New LHC schedule, both in terms of energy and instantaneous luminosity, increased interest in exploring also low-p_T CMS capabilities

Production cross-section	$\sqrt{s} = 14 \text{ TeV}$	$\sqrt{s} = 10 \text{ TeV}$	$\sqrt{s} = 7 \text{ TeV}$
Total inelastic	55 mb	51 mb	48 mb
Prompt J/ψ (COM)	320 µb	260 µb	210 µb
bb (NLO) [–]	480 µb	340 µb	230 µb
$W \rightarrow lv$	53 nb	35 nb	23 nb
tt –	550 pb	250 pb	90 pb
$gg \rightarrow H^0$ (NLO, $m_H = 200 \text{ GeV}$)	14 pb	8 pb	1.5 pb

Low p_T: MB and tracking

- <u>Trigger:</u> Two start-up High-Level Trigger (HLT) menus have been defined
 → "8e29" and "1e31", according to the instantaneous luminosities where they are expected to be effective:
 - Zero-bias trigger
 - Minimum-bias triggers (tuned by just changing pre-scale factors):
 - minimal activity in the EM or hadronic calorimeter
 - 2 short tracks above a given p_T threshold in the pixel detector
- <u>Reconstructed tracks</u>: Standard tracking down to 900 MeV/c. For QCD analyses pushed to lower values → keeping fake rates to o(%) needs:
 - Use of pixel hit triplets only for seeding
 - Cluster shape and measured width-trajectory compatibility requirements
 - Primary vertex finding and re-fit of tracks using determined vertex(es) $\rightarrow d_0$, d_z cuts

16/09/09

Low p_T: muons

- <u>Triggers:</u>
 - <u>8e29:</u> HLT_Mu3 and HLT_DoubleMu0, all others have 100% overlap
 - <u>1e31:</u> HLT_Mu5 (prescale: 20), HLT_Mu9 (unprescaled) and HLT_DoubleMu3 (unprescaled): not completely overlapping
- <u>Reconstructed muons</u>: besides the standard "global muons" (seeded by multiple signals in the muon chambers) two more categories used to recover the efficiency loss at low p_T:

- "Tracker muons" (one segment in μ C)
- "Calo muons" (only requiring minimum calorimeter compatibility)
- Up to 6 di-muon "categories", <u>3</u> of which can be efficiently selected online (HLT requires Level-1 seeding from the μ C, so at least one of the muons has high probability to be global)

Low p_T: electrons

- <u>Reconstructed electrons</u>: Standard reconstruction (starting from "superclusters" in the EM calorimeter) not effective below 4 GeV.
 - Particle flow electrons are seeded by short tracks in the first layers of the tracker, then follow and recover bremsstrahlung emission along the tangent up to ECAL → significant improvement in low-pT efficiency_
- <u>Triggers:</u>
 - Work on-going: not trivial
 - HLT timing requirements make tracker seeding difficult
 - Super-cluster reconstruction criteria can be loosened, but other trigger requirements being studied to control background rate and timing

h^{\pm} spectra: techniques in CMS

I will show in detail methods 2) and 3)

h^{\pm} spectra: "tracklets" (1)

• Based on reconstruction of hit pairs in the 2 innermost pixel layers ($p_T > 60 \text{ MeV/c}$) and constraint to primary vertex

- 2) the candidate vertex with the highest number of compatible combinations is taken as the PV
- 3) "Tracklets" are fitted using PV information

Build combinations of hit pairs
and extrapolate to compute z
of candidate vertex

1) Use of $\Delta \eta = \eta_1 - \eta_2$ to select good tracklets and and $\Delta \phi = \phi_1 - \phi_2$ to perform sideband subtraction on "data" (50 mb⁻¹ equivalent MC sample)

- Acceptance
 calculated from a
 large number of
 independent
 simulated events
 ("MC")
- Both 1) and 2) in bins of:
 - Hit multiplicity

Z_{vtx}

2)

h^{\pm} spectra: "tracklets" (3)

 Results: dN ±/dη after MC acceptance correction

• Estimation of main systematic sources

OURCE	900 GeV	<u>10 TeV</u>
Acceptance correction	5-10%	5-10%
ixel hit reconstruction efficiency	5.0%	5.5%
ixel hit splitting	1.5-3.5%	1.0-2.0%
ackground subtraction	0.5-1.5%	0.5-2.0%
lisalignment	1.0%	2.0%
OTAL	7.5-13.5%	8.5-13.5%

16/09/09

h^{\pm} spectra: full tracks (1)

- Using low-p_T tracking (all tracker, pixel + strips) and primary vertex finding technique:
 - $p_{T} > 100 \text{ MeV}/c \ (\pi), 200 \text{ MeV}/c \ (K), 300 \text{ MeV}/c \ (p)$
 - background from fake tracks down to o(%)
- V⁰ vertex finding after tracking rejects K_s 's, Λ 's
- Measured d*E*/dx in silicon allows π/K/p separation power depending on the p_T range considered

h^{\pm} spectra: full tracks (2)

- Results: dN [±]/dp_Tdη after MC acceptance correction (fitted by a Tsallis function)
- Estimation of main systematic sources is of the order of 7-9% (but see next slides)

16/09/09

Underlying event (1)

region

- Study of underlying event:
 - Triggers: MB + Jet20, 60, 120
 - Reconstruction of "charged jets" (using only track information, no calorimeters) \leftarrow tracking down to 500 MeV/c
 - Observables: $dN \pm / d\phi d\eta$ and $d\Sigma p_T/d\phi d\eta$ vs. p_T of the charged jet in the "transverse" region defined by the direction of the leading jet in the event (hard scattering contribution is minimized)

Underlying event (2)

- Comparison between different MC generators:
 - Herwig: does not include Multiple Parton Interactions
 - PYTHIA using different "tunes", i.e. parameterizations of UE structure (all including MPI)
 - DWT tune = Default used in reconstruction → MC acceptance corrections found to be independent of the model used

Low-p_T tracking: alignment

- Systematic errors for analyses using low-p_T tracking are expected to be dominated by tracker alignment
- Tracking efficiency re-estimated with a "start-up" alignment scenario (pessimistic, no cosmic data)
- Adding ad-hoc alignment position errors to MS estimation in pattern recognition recovers efficiency, while keeping fake rates below 5%
 Effect shown on UE analysis

$Q\overline{Q}$ resonances in CMS

- J/ ψ , Y(1S), Y(2S), Y(3S), B_c⁺: topics of studies completed/ongoing in CMS
- Quarkonia in <u>di-muon channel</u> \rightarrow wide physics program:
 - Physics analysis:
 - production cross-section measurements
 - spin alignment
 - P-wave states (χ_c, χ_b): radiative decays ...
 - Detector studies:
 - Momentum scale calibration
 - Measurement of muon trigger/reconstruction efficiencies using one well-reconstructed-muon and checking requirements on a candidate compatible with QQ mass ("tag-and-probe" method) ...
- Quarkonia in <u>di-electron channel</u>: feasibility still under study, due to the detector limitations of low-p_T electron identification
 16/09/09 Roberto Covarelli

The J/ ψ x-section measurement

$$\frac{d\sigma}{dp_T}(J/\psi) \cdot Br(J/\psi \to \mu^+ \mu^-) = \frac{N_{J/\psi}^{fit}}{\int Ldt \cdot A \cdot \lambda_{trigger}^{corr} \cdot \lambda_{reco}^{corr} \cdot \Delta p_T}$$

- $N_{J/\psi}^{fit} = (1 f_B) N_{J/\psi}^{tot}$ (prompt) or $f_B N_{J/\psi}^{tot}$ (non-prompt) *
- $\int Ldt$ = integrated luminosity
- A = signal acceptance/efficiency (from MC modeling) *
 λ^{corr}_{trigger} · λ^{corr}_{reco} = trigger/reconstruction efficiency MC/data correction (to be determined with tag-and-probe) *
- $\Delta p_T = \mathbf{p}_T$ bin size *

* = function of p_T

18

• For non-prompt J/ ψ , unfolding (to obtain $d\sigma/dp_T(b)$) is recommended for comparison with 16/0 We oretical predictions Roberto Covarelli

Event generation and samples

- Signal ($|\eta_{\mu}| < 2.4$)
 - Prompt J/ψ (~2M events) → PYTHIA6 Color Singlet + Color Octet model with matrix elements tuning from CDF results, uniform polarization
 - − Non-prompt J/ψ (~1M events) → EvtGen
- Backgrounds
 - Generic Drell-Yan events (~2M events)
 - Muon-enriched QCD events (~20M events). Main sources from MCtruth information:
 - D and B meson decays
 - Decay in flight of π and K
 - Hadron punch-through

Muon selection

- Global muons (very high signal purity) \rightarrow all selected •
- Tracker muons (lower purity) •

hMcRightTrkMuNhits

30

846 19.39

3.472

Entries

Mean

RMS

tracker

25

hits

J/ ψ yield $(N_{J/\psi}^{tot})$

- $L = 100 \text{ nb}^{-1}$ ۲
- Here integrated in p_{T} , • η
- Invariant mass form • muon track momenta

 $N_{J/\psi} = 4970 \pm 70$ $\sigma_{mass} = (34 \pm 2) \text{ MeV}$

 $\sqrt{s} = 10 \text{ TeV}$ 3 GeV single-muon

trigger

 $N_{J/\psi} = 4750 \pm 90$ $\sigma_{mass} = (32 \pm 3) \text{ MeV}$

0

ց(ծ թլ/թլ) [%]

10

J/ψ yields in data: expectations

B-fraction (f_B)

- Using a 2D-fit to invariant mass and proper decay length distributions:
 - Proper decay length calculated from decay length in the lab frame
 - Secondary vertex from a Kalman vertex fit to the two muon tracks

$$\ell^{J/\psi} \equiv \frac{L_{xy}^{J/\psi} \cdot M_{J/\psi}}{p_T^{J/\psi}}$$

- For <u>prompt events</u>, expected to be a simple δ -function
- For <u>non-prompt events</u>, it has an exponential shape with $\lambda_{\rm B}^{\rm eff}$ (but smearing effects must be considered since in this case we are using the "pseudo"-proper decay length, i.e. $\gamma_{J/\psi}$ instead of $\gamma_{\rm B}$)
- For <u>background events</u> a generic superposition of different contributions (symmetric + asymmetric with effective lifetimes) is adopted

Convoluted with 2-Gauss resolution

B-fraction (f_B)

- From 14 TeV result (2007):
 - global-global combinations only
 - 3 pb⁻¹ equivalent luminositv

-15 bins: $5 < p_T < 40$ GeV/c

-1 bin: $|\eta| < 2.4$

Acceptance correction (A)

- This has to be estimated from MonteCarlo
- Main contribution to systematics expected from unknown J/ψ spin alignment
 - In the 2007 work, estimated using differences in acceptance between the unpolarized case and the extreme polarization values in the helicity frame (all longitudinal, all transverse)
 - A more reliable procedure was outlined recently considering both helicity and Collins-Soper frames

- Tag-and-probe method:
 - Given a cleanly identified ("tag") muon, estimate number of other muons satisfying certain steps of reconstruction ("probes") from a fit to the QQ mass vs. p_T, η of the muon ← selection independent
 - Reconstruction:
 - Tag: global muon with $p_T > 3 \text{ GeV/}c$ $\varepsilon_{trk} = N_{trk+\mu C} / N_{C \mu}$ Limited by muon resolution in μ C and biased $\varepsilon_{\mu-ID} = N_{trk} C / N_{trk\mu}$ Well established
 - Trigger:
 - Tag: global muon matched to an HLT object

$$\varepsilon_{HLT} = N_{global-\mu} MLT / N_{global}$$

- Limitations of the method:
 - Fit precision
 - Correlation between muons (e.g. small ΔR)

Systematic uncertainties

Parameter affected	Source	$\Delta \sigma / \sigma$	
Luminosity	Luminosity	$\sim 10~\%$	
Number of J/ψ	J/ψ mass fit	1.0 - 6.3 %	
Number of J/ψ	Momentum scale	$\sim 1~\%$	
Total efficiency	J/ψ polarization	1.8 - 7.0%	
Total efficiency	$J/\psi p_T$ binning	0.1 - 10 %	
Total efficiency	MC statistics	0.5 - 1.7 %	
$\lambda_{reconstruction}$	Non-perfect detector simulation	$\sim 5~\%$	
$\lambda_{trigger}$	Non-perfect detector simulation	$\sim 5~\%$	
B fraction	ℓ_{xy} resolution model	0 1.9 %	
B fraction	B-hadron lifetime model	0.01 - 0.05 %	
B fraction	Background	0.1 - 3.0 %	
B fraction	Misalignment	0.7 - 3.5 %	
Total systematic uncertainty 13-19 %			

- Invariant mass

	10 pb ⁻¹	100 pb ⁻¹	ideal
J/ψ mass resolution (MeV/c ²)	34.2	30.5	29.5

Effects of misalignment on:

- Lifetime

16/09/09

Y(nS) analysis: sketch

- Cross-section measurement method along the lines of J/ψ (no need for lifetime fit)
 Y(nS) Mass Fit: Raw Yield
- Analysis in progess:
 - $-\sqrt{s} = 10 \text{ TeV}$
 - 3 GeV single-muon trigger

- Expected o(10K) events/pb⁻¹
- Achieved mass resolution allows separation of the 3 states
- Tag-and-probe expected to be more precise (larger average ΔR between the muons)

Conclusions

- CMS will be performing a variety of QCD-related measurements which in general:
 - are not statistically limited, so depend slightly on integrated luminosity
 - take advantage from running at different values of \sqrt{s}
 - Need optimization of detector performances at low p_T
- Several methods for charged hadron spectra measurement with increasing object complexity (from pixel hit counting to full tracking)
 - Need a few Kevents
 - Depend differently on detector conditions (typical systematic errors of ~10%)
- Underlying event study shows that it is possible to discriminate QCD "tunes" and estimate amount of MPIs with < 2 pb⁻¹
- Rich physics program with quarkonia in di-muons:
 - Use of low-purity muons increases statistics and allows lower $p_T(J/\psi)$ reach
 - Good S/B and very good mass resolution (~30 MeV) are obtained
 - Total yield of about 100K J/ ψ / pb⁻¹ (including tracker muons)
 - A differential J/ ψ cross-section measurement, separated by prompt/non-prompt contributions, in 5 < p_T < 40 GeV/c, $|\eta|$ < 2.4, is possible with 3 pb⁻¹